8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что необходимо знать о системе прямого впрыска топлива

Смотрите еще больше полезных и интересных статей на нашей новой площадке с удобным просмотром на смартфонах, планшетах и компьютерах!

05.05.2011

Особенности прямого впрыска топлива

В нашей стране уже достаточно давно и в немалом количестве продаются автомобили, оснащенные моторами с прямым впрыском топлива. Насколько хороши двигатели с непосредственным впрыском и не возникает ли проблем с их обслуживанием в российских техцентрах? Наши коллеги постарались найти ответы на эти вопросы…

Сегодня уже мало кто вспоминает о карбюраторных двигателях, а ведь они среди прочих силовых агрегатов стали отходить на второй план совсем недавно. Сколько копий было сломано на тему, стоит ли переходить на впрыск! И вот производитель уже не оставляет выбора, и автолюбитель вынужден смириться. Лишь спустя некоторое время приходит понимание всех преимуществ инжекторных моторов. Похожий сценарий можно наблюдать и сейчас: непосредственный впрыск медленно, но верно заменяет собой распределенный, как бы ни возражали против этого российские владельцы автомобилей.

Систему прямого впрыска топлива впервые запатентовала Mitsubishi, снабдив двигатели, использующие ее, аббревиатурой GDI (Gasoline Direct Injection). Главное их отличие отражено в названии: форсунка впрыскивает топливо под большим давлением непосредственно в цилиндр, а не во впускной коллектор, как раньше. Такое решение (разумеется, вкупе с другими инновациями) позволило добиться стабильной работы двигателя на сверхобедненных смесях, а это, в свою очередь, положительно сказалось на расходе топлива и количестве вредных выбросов.

Позже системы непосредственного впрыска появились и у других производителей. Каждый из них использует свою аббревиатуру для моторов с такой системой: Volkswagen — FSI, Mercedes-Benz — GGI, Toyota — D4… Поскольку такие двигатели достаточно требовательны к топливу, их (как и дизели) долгое время боялись устанавливать для автомобилей российского рынка. Однако сейчас эти моторы можно найти на моделях большинства представленных брендов, и их популярность продолжает расти.

Преимущества непосредственного впрыска топлива

Итак, невзирая ни на что, автомобильные моторы с прямым впрыском топлива медленно, но уверенно отвоевывают себе нишу среди себе подобных. Для начала заметим, что непосредственный впрыск имеет очевидные преимущества. Он позволяет двигателю работать на сверхобедненных смесях, что в условиях ужесточающихся норм токсичности и дорожающего топлива весьма актуально. В различных режимах движения мотор с непосредственным впрыском позволяет экономить до 13% топлива.

Особенно явно экономия сказывается в городском цикле — в условиях мегаполиса значительную часть времени мотор работает на холостом ходу или при частичных нагрузках. Однако, чтобы добиться этого, пришлось усложнить конструкцию двигателя. Давление в топливной магистрали возросло в разы — иначе не обеспечить требуемый распыл топлива. Для работы с таким давлением усовершенствовали практически все компоненты системы. Они стали очень требовательны к качеству топлива, которое у нас до сих пор существенно отличается от европейского. Зато это обстоятельство способствует меньшему закоксовыванию камеры сгорания, а потому раскоксовку двигателя с непосредственным впрыском надо делать гораздо реже.

Правда, повышенные требования к качеству бензина, который на многих российских АЗС далек от идеала, иногда пугает потенциальных покупателей. Не возникнет ли проблем, не придется ли регулярно наведываться в сервис? Конечно, определенные сложности в диагностике и обслуживании двигателей с непосредственным впрыском есть. Далеко не все диагносты знакомы с этой системой и способны с ней работать. Кроме того, необходимо наличие специального оборудования — к примеру, форсунки без съемника уже не демонтируешь. Датчиков стало больше, появился неведомый для владельцев бензиновых автомобилей топливный насос высокого давления (ТНВД).

Системы прямого впрыска топлива более долговечные

Логично предположить, что, чем сложнее конструкция, тем больше шансов, что она выйдет из строя. А компоненты системы непосредственного впрыска недешевы, к тому же они по большей части одноразовые. Взять тот же дизельный ТНВД — он ремонту не подлежит. Однако, несмотря на все эти особенности, говорить о низкой надежности подобных систем было бы неправильно. За более высокой (по сравнению с традиционными системами) ценой стоит более высокое качество изготовления деталей, следовательно, и ресурс у них больше.

К тому же не следует забывать об экономии денег на заправку. Здесь можно провести аналогию с дизелями: хотя они дороже в обслуживании, за счет умеренных аппетитов в итоге позволяют владельцу тратить на эксплуатацию меньше, особенно при больших пробегах. Собственно, можно бесконечно долго спорить о преимуществах и недостатках систем непосредственного впрыска, но рано или поздно производители не оставят нам выбора. Ведь с традиционными на сегодняшний день системами непросто обеспечить соответствие выхлопа нормам Евро 4, а Евро 5 — и вовсе невозможно.

Если же послушать мнение экспертов, то они считают: системы непосредственного впрыска становятся все более популярными и, безусловно, за ними будущее. Не стоит опасаться покупки оснащенных ими двигателей. Пусть эти системы сложнее и дороже, зато имеют лучшие тяговые характеристики и расходуют меньше топлива. Их параметры настолько хороши, что даже чип тюнинг двигателя таким моторам не требуется. Можно вспомнить еще и аспект экологии, но, увы, о нем российские автовладельцы думают в последнюю очередь. Что касается дороговизны запчастей и непригодности компонентов впрыска к ремонту, эти особенности, повторимся, компенсируются значительным ресурсом, который заложен в детали.

Разумеется, не стоит пренебрегать элементарным правилом: если на вашей машине двигатель с непосредственным впрыском топлива, заправляться нужно лишь на заслуживающих доверия АЗС. И еще: как любой современный автомобиль в целом, все новые системы, в том числе и аппаратура непосредственного впрыска топлива требуют своевременного обслуживания и грамотного сервиса. К сожалению, пока далеко не в каждом российском техцентре способны качественно продиагностировать такие машины: не хватает оборудования и специалистов. Очень хочется надеяться, что в ближайшее время подобные проблемы исчезнут.

Главные плюсы и минусы двигателей с непосредственным впрыском топлива

Прямой впрыск топлива – хорошо или плохо?

Двигатели с непосредственным впрыском (также используется термин «прямой впрыск», или GDI) начали появляться на автомобилях не так давно. Однако технология набирает популярность и все чаще встречается на моторах новых автомобилей. Сегодня мы в общих чертах постараемся ответить, что такое технология непосредственного впрыска и стоит ли ее опасаться?

Для начала стоит отметить, что главной отличительной особенностью технологии является расположение форсунок, которые размещены непосредственно в головке блока цилиндров, соответственно, и впрыск под огромным давлением происходит напрямую в цилиндры, в отличие от давно зарекомендовавшей себя с лучшей стороны системы впрыска горючего во впускной коллектор.

Прямой впрыск впервые был испытан в серийном производстве японским автопроизводителем Mitsubishi. Эксплуатация показала, что среди плюсов главными преимуществами стали экономичность – от 10% до 20%, мощность – плюс 5% и экологичность. Основной минус – форсунки крайне требовательны к качеству топлива.

Стоит также отметить, что схожая система уже долгие десятилетия успешно устанавливается на дизельные двигатели. Однако именно на бензиновых моторах применение технологии было сопряжено с рядом трудностей, которые до сих пор не были окончательно решены.

В видео с YouTube-канала «Savagegeese» объясняется, что такое прямой впрыск и что может пойти не так в ходе эксплуатации автомобиля с данной системой. В дополнение к главным плюсам и минусам в видеоролике также объясняются тонкости профилактического обслуживания системы. Кроме того, в ролике затрагивается тема систем впрыска во впускные каналы, которые можно в изобилии наблюдать на более старых моторах, а также моторы, которые используют оба метода впрыска горючего. Наглядно используя диаграммы Bosch, ведущий объясняет, как все это работает.

Чтоб узнать все нюансы, предлагаем посмотреть видео ниже (включение перевода субтитров поможет разобраться, если вы не очень хорошо знаете английский). Для тех, кому не слишком интересно смотреть, об основных плюсах и минусах непосредственного впрыска бензина можно прочитать ниже, после видео:

Итак, экологичность и экономичность – благие цели, но вот чем чревато использование современной технологии в вашем автомобиле:

Минусы

1. Очень сложная конструкция.

2. Отсюда вытекает вторая важная проблема. Поскольку молодая бензиновая технология подразумевает внесение серьезных изменений в конструкцию головок цилиндров двигателя, конструкцию самих форсунок и попутное изменение иных деталей мотора, к примеру ТНВД (топливный насос высокого давления), стоимость автомобилей с непосредственным впрыском топлива выше.

3. Производство самих частей системы питания также должно быть крайне точным. Форсунки развивают давление от 50 до 200 атмосфер.

Прибавьте к этому работу форсунки в непосредственной близости со сгораемым топливом и давлением внутри цилиндра и получите необходимость производства очень высокопрочных компонентов.

4. Поскольку сопла форсунок смотрят в камеру сгорания, все продукты сгорания бензина также осаждаются на них, постепенно забивая или выводя форсунку из строя. Это, пожалуй, самый серьезный минус использования конструкции GDI в российских реалиях.

5. Помимо этого необходимо очень тщательно следить за состоянием двигателя. Если в цилиндрах начинает происходить угар масла, продукты его термического распада достаточно быстро выведут из строя форсунку, засорят впускные клапаны, образовав на них несмываемый налет из отложений. Не стоит забывать, что классический впрыск с форсунками, расположенными во впускном коллекторе, хорошо очищает впускные клапаны, омывая их под давлением топливом.

6. Дорогой ремонт и необходимость профилактического обслуживания, которое тоже недешевое.

Помимо этого, в видео также объясняется, что при ненадлежащей эксплуатации на автомобилях с прямым впрыском могут наблюдаться загрязнение клапанов и ухудшение производительности, в особенности на турбированных двигателях.

Плюсы

2. Экономичность (правда, здесь нужно сделать оговорку: реальная экономия бензина доступна в условиях, близких к идеальным) – экономия 5-10%.

3. Немного более высокая мощность.

4. GDI при непосредственном попадании топлива в цилиндр охлаждает головку поршня.

5. Происходит лучшее смешение топливовоздушной смеси в цилиндрах.

7. Требуется гораздо меньше топлива, смесь при определенных условиях работы мотора может обедняться до 30:1

8. Процесс работы двигателя точнее контролируется при помощи компьютера.

Таким образом, если выполнять определенные правила, предписанные автопроизводителем, а именно заправляться на проверенных заправках качественным топливом и регулярно проводить техническое обслуживание топливной системы автомобиля, то ухудшения качеств мотора, а тем более поломок оборудования можно избежать. Специалисты также советуют проводить прочистку форсунок после каждых 50-60 тыс. км.

Впрыск топлива: прямой vs распределенный.

  • Рассмотрим и другие отличия агрегатов HPi, GDI, CGI и FSI от модельного ряда MPI-моторов:

На самом деле, при помощи газовой педали осуществляется управление воздухоподачей внутрь цилиндров. А в зависимости от температуры мотора и его реальной производительности, будет подано и необходимое количество топлива для приготовления оптимального состава горючей смеси.

Например, у давно устаревших двигателей с карбюратором дозировка бензина осуществлялась по принципу разрежения воздуха, находящегося за заслонкой дросселя, управление которой осуществлялось педалью «газ». Сразу стоит сказать, что дозировка бензина в таком типе силового агрегата не отличалась точностью, вследствие чего карбюраторный мотор нельзя было назвать экономичным и экологически безопасным. В итоге это и послужило толчком к полному списанию карбюраторных моторов с производства.

Карбюраторные системы впрыска топлива с успехом заменили системы форсунок, подача и впрыск топливной смеси в которых осуществляется под давлением, его обеспечивает бензонасос.

Выделяют три основных типа систем впрыска:

  1. центральная;
  2. распределительная;
  3. прямая.

Однако сегодня на автомобилях применяются только последние две. Если говорить о центральной системе распределения впрыска (моновпрыске), то ее работа оказалась неэффективной, поскольку топливная смесь неравномерно распределялась по цилиндрам, а на впуске возникало значительное сопротивление, в результате чего не удалось достичь требуемого уровня экономичности. По этой причине и в связи с ужесточением норм экологической безопасности, моноврпрыск, как и карбюратор, также канул в Лету.

Относительно распределительной (многоточечной) системы впрыска MPI -Multi Point Injection можно сказать, что в ее работе также далеко не все в порядке. Однако, ее «конкуренту» – системе прямой подачи топлива, которую с конца ХХ века стал использовать на всем своем модельном ряде концерн Mitsubishi, более чем за 15 лет так и не получилось отправить MPI в отставку. Теме не менее, по прогнозам специалистов, это когда-нибудь да случится, и систему распределительного впрыска, как карбюратор и центральный впрыск отправят на «свалку автомобильной истории».

Действительно ли использование системы прямой топливоподачи настолько эффективно и оправдано, что скорое вытеснение с рынка MPI неизбежно? Дабы правильно ответить на этот вопрос, стоит провести сравнение этих систем топливоподачи.

В отличие от центрального типа топливовпрыска в этих обеих системах бензин впрыскивается через форсунку в цилиндр силового агрегата, но в распределенной системе предусмотрен впускной коллектор, через который вначале проходит топливо.

Во время прямой подачи топлива его впрыск осуществляется непосредственно в цилиндр, а точнее, в его камеру сгорания. Пожалуй, это и является главным отличием двигателей, которые у разных производителей имеют свои буквенные обозначения: CGI (Mercedes), FSI (Volkswagen), GDI (Mitsubishi), HPi (Peugeot) от модельного ряда моторов MPI.

Интересно, а чем же так хорош прямой впрыск топлива в цилиндр? Реально – ничем, если учитывать конструкционные особенности моторов. А все потому что в этом случае на создание горючей смеси и испарение паров бензина выделено слишком мало времени, чем при его прохождении через впускной коллектор, когда на выходе в цилиндр поступает уже полностью готовая смесь.

Рассмотрим и другие отличия агрегатов HPi, GDI, CGI и FSI от модельного ряда MPI-моторов:

  1. В системе прямого впрыска, давление проходящего через форсунку топлива, в несколько десятков раз выше, нежели в системе распределенного впрыска. Это достигается благодаря применению ТНВД в конструкции силовых агрегатов с прямым топливовпрыском.
  2. Специальная конструкция форсунок системы прямой топливоподачи позволяет раскручивать капельки бензина на выходе, благодаря чему быстрее осуществляется их испарение. В то время как вся функция форсунки распределительной системы состоит из средств формирования топливного факела.

Как видно, система топливоподачи MPI гораздо проще во всех отношениях. Но, это далеко не все. В двигателях с прямой подачей топлива на их производительность влияет распределение воздуха внутри них и количество впрыснутого топлива в цилиндры. По этой причине поршневая часть в агрегатах с системой прямого впрыска имеет сложную профилированную конструкцию.

Подобную функцию выполняют и клапаны впуска в конструкции коллектора системы прямой подачи топлива. В конструкции HPi, GDI, CGI и FSI агрегатов предусмотрено послойное образование горючей смеси. Это говорит о том, что полностью сгорает лишь небольшое количество топлива, находящееся вблизи свечи зажигания либо происходит процесс разрушения этого облака из горючего для того, чтобы сделать всю рабочую смесь более обогащенной. В силовых бензиновых агрегатах конструкции MPI каналы для впуска топлива необходимы исключительно для впрыска смеси бензина с воздухом в цилиндры, поэтому они не имеют заслонок и винтовой формы, как моторы с прямой топливоподачей.

Такими «наворотами» перечисление отличий системы прямой подачи топлива от распределенной не заканчивается. Однако, большинство заметных моментов уже описаны выше. Если копнуть поглубже, то стоит отметить, что топливный насос высокого давления, наличие специального впускного коллектора, поршневой части особой конструкции и сложной системы форсунок отчасти можно отнести к недостаткам, наличие которых вовсе не говорит, что лишенным этого двигателям MPI придется сойти с дистанции. Во всяком случае, в ближайшее время.

Но, рано или поздно, это все же произойдет. И опять-таки по той же причине, которая относительно недавно сделала карбюратор и систему центральной подачи топлива достоянием политехнических музеев – отсутствие у системы распределенной подачи бензина высоких показателей экономии топлива без потери мощности силового агрегата, и большое количество вредных соединений в выхлопных газах автомобиля. Проведенные тестирования систем топливоподачи выявили, что силовые агрегаты с системой прямого впрыска топлива в отличие от других моторов, имеющих одинаковый объем, позволяют экономить порядка 20-25% топлива, при этом их мощность возрастает на 10%. Естественно, что ни один из существующих автопроизводителей не станет пренебрегать заявленными удовольствиями!

Но, наличие большого количества преимуществ вовсе не говорит об отсутствии недостатков. У системы прямой подачи топлива есть свой «скелет в шкафу». Если рассматривать экологическую составляющую использования прямого впрыска, то она практически идеальна, за исключением одного «но» – повышенного содержания сажи в выхлопных газах. Это и делает систему прямой топливоподачи единственным конкурентом дизельным силовым агрегатам. А это уже реальная возможность FSI поладить с MPI. Это было бы классно, но, во всяком случае, этим системам придется ладить друг с другом в одном двигателе.

Именно эту идею и воплотили в жизнь конструкторы компании Volkswagen, объединив в одном моторе обе системы MPI и FSI. Двигатели 1,8 и 2,0 TFSI относятся к третьему поколению агрегатов EA888.

vitalxbc › Блог › Непосредственный впрыск топлива бензиновых ДВС.

Система непосредственного впрыска топлива является самой современной и совершенной, с точки зрения экономия топлива и экологии, системой впрыска топлива бензиновых двигателей. Работа системы основана на впрыске топлива непосредственно в камеру сгорания двигателя.

Впервые система непосредственного впрыска была применена на двигателе GDI (Gasoline Direct Injection – непосредственный впрыск бензина), устанавливаемом на автомобили компании Mitsubishi. В настоящее время система непосредственного впрыска используется в двигателях многих автопроизводителей.

Toyota — D4
Mercedes-benz — CGI
Mitsubishi — GDI
Nissan — NEO DI
Renault — IDE
Alfa Romeo — JTS
PSA Peugeot Citroën — HPi
Mazda — DISI; SkyActive
General Motors — Ecotec
Ford — TwinForce, SCTi, EcoBoost
Volkswagen, Audi, Skoda — FSI, TSI, TFSI
Opel — SIDI (Spark Ignition Direct Injection)

Применение системы непосредственного впрыска позволяет достичь до 5-15% экономии топлива в режиме холостого хода и частичных нагрузок, а также сокращения выброса вредных веществ с отработавшими газами.

Устройство системы непосредственного впрыска топлива.

Конструкция системы непосредственного впрыска топлива рассмотрена на примере системы, устанавливаемой на двигатели FSI Fuel Stratified Injection – послойный впрыск топлива. Система непосредственного впрыска составляет контур высокого давления топливной системы двигателя и включает топливный насос высокого давления, регулятор давления топлива, топливную рампу, предохранительный клапан, датчик высокого давления и форсунки впрыска.

1. топливный бак
2. топливный насос
3. топливный фильтр
4. перепускной клапан
5. регулятор давления топлива
6. топливный насос высокого давления
7. трубопровод высокого давления
8. распределительный трубопровод
9. датчик высокого давления
10. предохранительный клапан
11. форсунки впрыска
12. адсорбер
13. электромагнитный запорный клапан продувки адсорбера

Топливный насос высокого давления служит для подачи топлива к топливной рампе и далее к форсункам впрыска под высоким давлениям (3-11 МПа) в соответствии с потребностями двигателя. Основу конструкции насоса составляет один или несколько плунжеров. Насос приводится в действие от распределительного вала впускных клапанов.

Регулятор давления топлива обеспечивает дозированную подачу топлива насосом в соответствии с впрыском форсунки. Регулятор расположен в топливном насосе высокого давления. Топливная рампа служит для распределения топлива по форсункам впрыска и предотвращения пульсации топлива в контуре. Предохранительный клапан защищает элементы системы впрыска от предельных давлений, возникающих при температурном расширении топлива. Клапан устанавливается на топливной рампе.

Датчик высокого давления предназначен для измерения давления в топливной рампе. В соответствии с сигналами датчика блок управления двигателем может изменять давление в топливной рампе. Форсунка впрыска обеспечивает распыление топлива в камере сгорания для образования топливно-воздушной смеси.

Согласованную работу системы обеспечивает электронная система управления двигателем, которая является дальнейшим развитием объединенной системы впрыска и зажигания. Традиционно система управления двигателем объединяет входные датчики, блок управления и исполнительные механизмы.

Помимо датчика высокого давления топлива в интересах системы непосредственного впрыска работают датчик частоты вращения коленчатого вала, датчик положения распределительного вала, датчик положения педали акселератора, расходомер воздуха, датчик температуры охлаждающей жидкости, датчик температуры воздуха на впуске.

Читать еще:  Roter › Блог › Цикл Отто, Аткинсона/Миллера … SKYACTIVE и SOHC i-VTEC

В совокупности датчики обеспечивают необходимой информацией блок управления двигателем, на основании которой блок воздействует на исполнительные механизмы — электромагнитные клапаны форсунок, предохранительный и перепускной клапаны.

Принцип действия системы непосредственного впрыска
Система непосредственного впрыска в результате работы обеспечивает несколько видов смесеобразования:

Послойное
Стехиометрическое гомогенное
Гомогенное

Многообразие в смесеобразовании определяет высокую эффективность использования топлива (экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов, мгновенный отклик на педаль акселератора) на всех режимах работы двигателя.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. Стехиометрическое (другое наименование – легковоспламеняемое) гомогенное (другое наименование – однородное) смесеобразование применяется при высоких оборотах двигателя — режим макисмальной мощности или больших нагрузках — режим максимального момента. На бедной гомогенной смеси двигатель работает в промежуточных режимах и на холостом ходу, когда нужно обеспичить максимальную экономию топлива. При послойном смесеобразовании дроссельная заслонка почти полностью открыта, впускные заслонки закрыты. Воздух поступает в камеры сгорания с большой скоростью, с образованием воздушного вихря. Впрыск топлива производится в зону свечи зажигания в конце такта сжатия, для этого поршень имеет специальную форму днища. За непродолжительное время до воспламенения в районе свечи зажигания образуется топливно-воздушная смесь с коэффициентом избытка воздуха от 1,5 до 3. При воспламенении смеси вокруг нее остается достаточно много чистого воздуха, выступающего в роли теплоизолятора.

Гомогенное стехиометрическое смесеобразование происходит при открытых впускных заслонках, дроссельная заслонка при этом открывается в соответствии с положением педали газа. Впрыск топлива производится на такте впуска, что способствует образованию однородной смеси. Коэффициент избытка воздуха составляет 1. Смесь воспламеняется и эффективно сгорает во всем объеме камеры сгорания. Бедная гомогенная смесь образуется при максимально открытой дроссельной заслонке и закрытыми впускными заслонками. При этом создается интенсивное движение воздуха в цилиндрах. Впрыск топлива производится на такте впуска. Коэффициент избытка воздуха поддерживается системой управления двигателем на уровне 1,5. При необходимости в состав смеси добавляются отработавшие газы из выпускной системы, содержание которых может доходить до 25%, что снижает количество кислорода в камере сгорания.

На практике непосредственный впрыск приносит много головной боли своим владельцам, вся экономия топлива рассыпается в труху о стоимость ремонта и обслуживания.

1. Необходимо следить за чистотой бензина от механических примесей. Что попало (самый дешевый) в эти двигатели не пойдет. Только самый дорогой из доступных, причем АИ-98-100.

2. Приходится часто менять топливные фильтры (обычно 30-60т.км.), причем только оригинальные. Использование неоригингальных топливных фильтров чревато быстрым износом ТНВД и забитыми форсунками, со всеми прелестями их замены или ремонта. Можно конечно рисковать, но в случае чего — выйдет раком очень дорого.

3. При температурах ниже -25-30С ТНВД из-за ухода тепловых зазоров не может развить номинальное давление, с прогревом он конечно довольно быстро приходит в норму. Но с увеличением пробега все становится хуже. Двигатель трясется, пытается — и не заводится нормально. Кроме того, запуск при таких температурах быстро изнашивает ТНВД и форсунки.

4. Каждые 30-60т.км. необходимо обслуживать всю топливную систему — промывать форсунки, менять уплотнительные колечки, проверять все насосы и при необходимости менять (насос низкого давления) либо ремонтировать (насос высокого давления). Иначе можно «встать» колом.

5. Нужно подбирать масло так, чтобы оно не сильно загаживало камеру сгорания и впускные клапана (а значит зола не больше 1,15%, а в некоторых случаях и все 0,8-1% что явно не способствует стойкости масла и сроку жизни ДВС до износа), но так чтобы предотвратить износ распредвалов, цепей, шестерен и прочего. Подобрать такое масло — не так то просто, даже сами автопроизводители в своих допусках уже запутались…и даже придумали новую страшилку — проблема LSPI. Несите ваши денежки за новые масла…только это вам не поможет. Выбирайте — повышенный износ всего двигателя, но чистые от нагара клапана и каналы, либо — низкий износ и все заросшее нагаром, с опасностью клина. Хороший выбор, не правда ли? Что в лоб, что по лбу…особенно печально в свете того, что многие двигатели с непосредственным впрыском имеют пластинчатую цепь Морзе, либо кулачки распредвалов непосредственно скользят по толкателям клапанов без роликовых механизмов, имеющую крайне высокие требования к противозадирным и противоизносным компонентам ZDDP и ZP, содержание которых приходится постоянно снижать, с все ужесточающимися экологическими нормами. Сюда нужны исключительно полнозольники…иначе износ к 150т.км. будет критическим. Раз в пару-тройку лет — обязательная чистка.

6. Самое веселое — каждые 50-100т.км. необходимо очищать одним из способов (чаще всего — механически, с разборкой) впускные клапана и впускные окна головки блока, из-за того что они не омываются бензином — зарастают нагарами, отложениями, сажей. «Спасибо» системам EGR и принудительной вентиляции картера. Все это дерьмо прилетает именно оттуда и налипает повсюду. В противном случае двигатель сначала теряет мощность (обычно чуть больше 100т.км.), в некоторых случаях смесь обогащается (воздуха мало) и двигатель начинает под нагрузкой коптить, в особо тяжелых случаях (когда владелец — у меня 150-180тыщ ниче не делал по движку — машина огонь!) возможно повреждение клапанов (клинит и гнет…) либо даже отрыв тарелок, с крайне тяжелыми последствиями…а эти двигатели нихрена не простые в сборке-разборке. И еще более тяжелые в капремонте. Если делать самостоятельно — довольно сложно и трудоемко, если ехать в автосервис — неприлично дорого и велик риск что ничего путем не очистят, а протрут тряпочкой впускные каналы и ОК — ждем на капиталочку, лох подготовлен, счетчик запущен…

7. Очень распространенная проблема двигателей с непосредственным впрыском — низкое тепловыделение на холостых и медленном движении по пробкам, в режиме бедной смеси. Экономия она конечно хорошо, но когда за окном -25-35С двигатель натурально остывает, из печки начинает идти холодный воздух. Все двигатели объемом менее 2л с непосредственным впрыском в той или иной степени подвержены этой проблеме. Постепенно решают извращениями с контурами охлаждения (подогрев антифриза от выхлопа, 2 термостата один в головку, второй в блок), интеграция выхлопного коллектора в головку блока…и…даже подачей обогащенной смеси, если температура ДВС начинает снижаться, превращая весь смысл непосредственного впрыска в ничто.

8. При езде на высоких скоростях, под нагрузкой, по трассе, когда нужен большой момент и мощность, для сопротивления нагрузке и воздушному потоку — экономия топлива от непосредственного впрыска едва ли укладывается в диапазон 1-5%. В таком режиме двигатель готовит исключительно стехиометрическую смесь, а то и богатит, когда нужна максимальная мощность. В таких режимах езды выгоды от непосредственного впрыска нет и быть не может.

9. Почти полная неликвидность авто с такими двигателями с реальным пробегом свыше 100-150т.км., даже если авто обслуживалось во время и проблем не доставляло. Сильное падение цены на вторичке. Владельцам приходится сматывать пробег в разы, чтобы вообще куда-то продать…и по этой причине невозможно понять, сколько же реально ходят эти двигатели?

К сожалению, непосредственный впрыск топлива бензиновых ДВС можно отнести еще к одной системе снижения ресурса до вмешательства, и вновь срок службы до первого ремонта не превышает 100-150т.км. городского пробега. Если хотите реально экономить топливо — покупайте дизель. Там тоже прелестей хватает («зимнее» летнее диз.топливо, свечи накала, топливные фильтры, прокладки форсунок, ТНВД, сажевые фильтры…), но рассчитаны они обычно для комтранса, имеют огромный запас прочности (сравните поршни, толщину колец, шатунов, коленвала, конструкцию головы, блока) и раньше 250-350т.км. вы туда вряд ли вообще полезите.

Системы впрыска топлива бензиновых двигателей

Рассмотрим, как устроены системы впрыска бензиновых двигателей, как они работают, каковы их виды, в чём особенности центрального, коллекторного и непосредственного впрыска.

Системы впрыска топлива бензиновых двигателей – это системы для дозированной подачи бензина в ДВС. Тип устройства, характеристика системы влияет на ряд важных показателей. Это экологический класс двигателя, его мощность, топливная эффективность.

Устройство системы впрыска бензинового двигателя может иметь различные конструктивные решения и модификации. О них мы расскажем, останавливаясь на конкретных видах систем впрыска.

Варианты топливных систем бензиновых двигателей

Впрыск топлива в воздушный поток может происходить как за счёт разрежения, так и за счёт избыточного давления. Например, в карбюраторе впрыскивание происходит за счёт разрежения, а в большинстве современных систем — за счёт избыточного давления.

  • центральным (например, наддроссельный впрыск),
  • распределённый или коллекторный (осуществляется отдельной форсункой в предкамеру, расположенную перед впускным клапаном каждого цилиндра двигателя),
  • непосредственный (осуществляется напрямую в камеры сгорания, отдельными форсунками), встречается в разных вариациях, характерен для современных автомобилей..

Варианты топливных систем бензиновых двигателей (R R. Bosch)

Конструктивное решение с карбюраторами

Дольше всего человечество знакомо с подачей топлива посредством карбюратора. И не потому, что такие решения лучшие, а потому что они – первые. И через множество лет это были единственно доступные системы. Карбюратор был неотъемлемой частью топливной системы на протяжении сотни лет. Нельзя сказать, что сейчас карбюраторы полностью исчезли из жизни, но на легковой и коммерческий транспорт карбюраторы ставить перестали. Их можно увидеть только на средствах малой механизации, которые применяются для садовых, строительных работ.

Автопром же перестал выпускать машины с карбюраторной системой еще в 90-е годы прошлого века.
Принцип их действия основан на всасывании топлива в поток воздуха, проходящего через сужение карбюратора. увеличение скорости движения воздуха в месте сужения воздушного канала формирует разрежение воздуха.

Объём воздуха, который проходит через сужение воздушного канала, пропорционален объёму топлива, поступающего через распылитель карбюратора. Благодаря этому несложно в автоматическом режиме поддерживать требуемое отношение топлива к воздуху.
.

Как работает устройство?

  1. Топливо из бака выбирает насос (управляемый механически или электрически – в зависимости от модели).
  2. ДВС запускается, и поток воздуха, проходящий через сужение воздушного канала карбюратора, создает разрежение.
  3. В смесительную камеру карбюратора поступает топливо.
  4. Жиклер (калиброванное отверстие) дозирует топливо.

С точки зрения работы всё достаточно просто. Так почему же карбюраторы уходят в историю?

Здесь достаточно много причин:

  • Низкая экономичность, а соответственно, и низкий уровень топливной эффективности.
  • Проблемы при переменных режимах работы, снижающие динамические качества- автомобиля.
  • Прямая зависимость от расположения двигателя в автомобиле.
  • Выброс в окружающую среду большого количества вредных веществ (несоответствие нормативам эмиссии газообразных вредных выбросов в атмосферу).

Моновпрыск

На смену карбюратору пришла система так называемого «над дроссельного впрыска» топлива. Она также известна как моновпрыск или система центрального впрыска.

Принцип базируется на впрыске топлива одной форсункой, установленной на впускном коллекторе двигателя.

Самыми популярными конструкциями системы центрального впрыска являются решения Mono-Jetronic от R. R. Bosch и Opel-Multec (как нетрудно догадаться из названия, это решение корпорации Opel).

Появление моновпрыска приходится на середину 70-х годов 20-го века. В то время системой Mono-Jetronic стали оснащать автомобили Volkswagen и Audi.

Главной задачей при разработке моновпрыска стало нахождение альтернативы карбюраторной системе впрыска. Важно было найти более эффективную систему топливоподачи, которая смогла бы удовлетворить возросшим экологическим требованиям.

Mono-Jetronic: конструктивные элементы

  • Регулятор давления. Способен поддержать на стабильном уровне рабочее давление в системе впрыска, а после выключения ДВС сохранить остаточное давление в системе . Это важно для облегчения пуска, создание барьеров против образования паровых пробок.
  • Электромагнитный клапан (форсунка). Обеспечивает импульсный впрыск топлива. Управление клапаном осуществляется посредством электросигнала. Он идёт от блока управления.
  • Дроссельная заслонка. Регулятор объема поступающего воздуха.
  • Привод. Он ответственный за работу дроссельной заслонки.
  • Электронный блок управления. «Мозг», синхронизатор.

Входные датчики (момента впрыска, положения дроссельной заслонки, оборотов двигателя, концентрации кислорода и т.д.).

Распределённый впрыск

В 70-е годы появились и системы распределительного впрыска, основанные на подаче топлива отдельной форсункой в предкамеру, расположенную перед впускным клапаном каждого цилиндра двигателя. Впрыск может быть при этом может быть как импульсным, так и непрерывным.

Мы остановимся на решении K-Jetronic производителя Robert R. Bosch с непрерывным впрыском. K-Jetroniс активно присутствовала на рынке с 1973-го по 1995 годы. Сначала K-Jetroniс выпускалась с механической системой дозирования. С 1982 года — с электронной начинкой и электронным управлением дозирования. Начиная с версий (модификаций) с электронным управлением система стала называться KE-Jetroniс.

Экономические характеристики автомобилей, их уровень топливной эффективности был существенно улучшен, уровень выбросов вредных веществ в выхлопе также снизился.

В системах K/KE-Jetronic впрыск топлива осуществлялся непрерывно в смесительную камеру перед впускным клапаном. При этом количественное дозирование топлива, поступающего в поток воздуха, производилось за счет взаимосвязанных узлов «расходомер – дозатор».

Помимо дозатора-распределителя обязательный элемент решения – дроссельная заслонка, расположенная за дозатором, у первых версий были вакуумно-механические клапаны коррекции топлива(запуск клапанов в работу возможен как от терморегуляторов, так от разряжения воздуха во впускном коллекторе), в поздних модификациях появились электрические клапаны коррекции топлива. Кроме того, системы стали оснащать кислородным датчиком (лямбда-зондом). Огромным плюсом схемотехнического решения стало то, что система впрыска могла быть оснащена катализаторам-, но к уровню надёжности были существенные вопросы.

Дискретный впрыск топлива

Новой эрой стал дискретный впрыск топлива. Первой здесь стала электронная система распределенного впрыска топлива L-Jetronic – опять-таки от R. R. Bosch. С появлением этого решения стало возможным говорить о качественной управляемости, безотказности, надёжности. Да, сразу же стало ясно, что это средний и высокий ценовой сегмент. Поэтому долгое время системы дискретного впрыска топлива сосуществовали с системами непрерывного распределительного впрыска типа K/KE-Jetronic.

Но постепенно L-Jetronic обрела массовость. Её стал активно использовать практически весь европейский автопром. Явные плюсы оценили и водители, и персонал автосервиса: повысилась топливная экономичность авто. Для обслуживания перестали быть нужны сложные навыки (в первую очередь, это стало возможным за счёт того, что отпала надобность выполнять механические настройки).

L-Jetronic несколько раз модернизировалась и уверенно держалась на рынке до появления стандарта Евро-3. После чего более актуальными стали решения на основе термоанемометрических датчиков массметра (массового расхода воздуха). В частности, популярность приобрела модификация LH-Jetronic .

У новой разработки стала доступна индивидуальная регулировка подачи топлива в каждый из цилиндров
Объединяющая черта систем Mono-Jetronic, L-Jetronic, LH-Jetronic состоит в том, это все эти решения управляют только впрыском топлива, при этом для воспламенения топлива задействована система зажигания с модулем электронного управления.

Устройства, в которых система и зажигания и впрыск были синхронизированы и объединены, корпорация R.R. Bosch начала выпускать с 1979 года.

Ярким примером решения с объединёнными системами впрыска и зажигания – стала система Motronic от R.R. Bosch.
Она существовала в нескольких модификациях, появившихся в 90-е годы 20-го века. В эти годы в их конструкции входили механические расходомеры воздуха. Но вскоре вместо них стали использоваться термоанемометрические датчики-расходомеры, расширились возможности для самодиагностики.

Правда, полностью удовлетворить запросам диагноста системы не могли, поскольку протокол выявления неисправностей не обладал высокой результативностью. В последующих модификациях эта проблема была успешно решена.

Но самым революционным решением Motronic стало появление датчика абсолютного давления во впускном коллекторе (MAP-sensor).

Использование MAP-сенсора в системе управления двигателем позволило готовить качественную топливовоздушную смесь, состав которой близок к желаемому, и, главное, не сложно соблюсти европейские требования к выхлопам автомобилей.

Но для выхода на американский рынок даже этого было недостаточно. По стандартам США в топливной системе должна быть обязательная система контроля утечек паров топлива из бака. Так появилось инновационное решение Motronic M5. С ним появились все условия для того, чтобы исключить эксплуатацию автомобиля с потерявшей герметичность пробкой заливной горловины или неисправной системой вентиляции топливного бака.

Кроме того, эта система соответствует требованиям самого строгого протокола самодиагностики OBD-II/CARB.

А благодаря электроуправлению дроссельной заслонкой отлажено взаимодействие между системой управления двигателем и системой торможения.

Системы непосредственного впрыска

Особое место среди систем впрыска бензиновых двигателей получили системы непосредственного впрыска.
Их принцип действия основан на том, что топливо посредством инжектора распыляется прямо в цилиндр двигателя.

  • Это важно для достижения топливной экономичности.
  • Плунжерный насос. Подаёт топливо в рампу, соединённую с форсунками.
  • Регулятор давления топлива. Поддерживает стабильное рабочее давление в топливной рампе. Топливная рампа. Здесь непосредственно происходит процесс распределения топлива по форсункам.
  • Предохранительный клапан на рампе. Защищает рампу от предельных давлений.
  • Датчик высокого давления. Замеряет давление в рампе, подаёт сигнал блоку управлением двигателя на коррекцию давления.

Согласование взаимодействия узлов осуществляется посредством электронной системы управления двигателем. От блока электронного управления поступают команды на исполнительные механизмы.

Интересная деталь! Если среди дизельных систем впрыска такие топливные системы были популярны давно, то среди бензиновых распространение получили не сразу. Причина элементарно проста: бензин в отличие от дизельного топлива является плохой смазкой, что вызывало быстрый износ» топливного насоса.

Но с развитием технологий уплотнений разработчики снова смогли заняться бензиновыми системами с прямым впрыском топлива. Система непосредственного впрыска может обеспечивать несколько видов смесеобразования: послойное, однородное (гомогенное), и стехиометрическое. Послойное смесеообразование актуально при малых и средних оборотах, стехиометрическое и гомогенное – при сверхвысоких оборотах, а также при средних и высоких нагрузках.

Самые популярные решения – с послойным смесеобразованием. Их хорошо знают по названию FSI и TFSI (у Volkswagen и у Ауди). Буква “T” в названии свидетельствуют о наличии турбокомпрессора, то есть двигатель, как именуется в просторечии — “турбирован”.

В цилиндр таких бензиновых систем впрыска поступает небольшое количество топлива. Тщательная организация потока воздуха в цилиндре (его траектория движения, подобная «кувырку) и удачно подобранное время впрыска топлива в цилиндр создают все условия, чтобы это небольшое количество топлива было подано к электродам свечи зажигания, и произошло воспламенение этой порции горючей смеси.

Почему на эту бензиновую систему впрыска не переходят повсеместно. К сожалению, актуальна такая проблема, как «турбоямы» при резком нажатии на педаль газа.

Этот недостаток полностью устранен при наличии наддувочного агрегата с электроприводом. Такие системы недёшевы. Но оперативно выйти на режим максимальной мощности, избежать «турбоям» при резком нажатии педали на газ с ними – не проблема. Прямой впрыск SC-E актуален, например, для ряда спортивных автомобилей.

Очень высокий интерес – и к битопливным (бинарным) система с газотурбинным наддувом. При работе на бензине можно достичь очень хорошего крутящего момента.

Параметры применяемого топлива прописываются в постоянной памяти. Если нужно заменить бензин на альтернативное топливо, изменяется программа смесеобразования. Это очень удобно.

Какой впрыск лучше?

Очень часто спорят: какой впрыск лучше. Дешевле всего обойдутся решения, ориентированные на распределённый впрыск. Подкупает и то, что они не требовательны к качеству топлива.

Если вам важно, чтобы была высокая топливная эффективность при минимальных значениях вредных выбросов, однозначно стоит выбирать непосредственный впрыск. Да, эти решения дороже. Но лучше заплатить больше единожды, чем постоянно “съедать” лишнее топливо.

Кстати, дороговизна решения связана, главным образом, с тем, что производителям пришлось внести кардинальные изменения в конструкцию головок цилиндров, однако в ремонте эти двигатели значительно дороже простых и надёжных двигателей с распределённым предкамерным впрыском топлива.

Не просто изучить топливные системы, а попрактиковаться работать в поиске различных неисправностей в них вам поможет специализированный тренажёр на платформе ELECTUDE. Отличное подспорье для автомобильных механиков и диагностов.

Система непосредственного впрыска топлива

Сейчас одной из основных задач перед конструкторскими бюро автопроизводителей является создание силовых установок, потребляющими как можно меньше топлива и выбрасывающих в атмосферу сниженное количество вредных веществ. При этом всего этого необходимо добиться с условием того, что влияние на рабочие параметры (мощность, крутящий момент) будет минимальным. То есть, необходимо сделать мотор экономичным, и в то же время мощным и тяговитым.

Для достижения результата переделкам и доработкам подвергаются практически все узлы и системы силового агрегата. Особенно это касается системы питания, ведь именно она отвечает за поступление топлива в цилиндры. Последней разработкой в данном направлении считается непосредственный впрыск топлива в камеры сгорания силовой установки, функционирующего на бензине.

Читать еще:  Музыка в машине: с чего начать

Суть этой системы сводится к раздельной подаче компонентов горючей смеси – бензина и воздуха в цилиндры. То есть принцип ее функционирования очень похож на работу дизельных установок, где смесеобразование выполняется в камерах сгорания. Но у бензинового агрегата, на котором установлена система непосредственного впрыска, имеется ряд особенностей процесса закачки составляющих топливной смеси, его смешивания и сгорания.

Немного истории

Прямой впрыск – идея не новая, в истории имеется ряд примеров, где такая система использовалась. Первое массовое использование такого типа питания мотора было в авиации в средине прошлого века. Использовать ее пытались и на автотранспорте, однако широкого распространения она не получила. Систему тех годов можно рассматривать как некий прототип, поскольку она была полностью механической.

«Вторую жизнь» система непосредственного впрыска получила в средине 90-х годов 20 века. Первыми свои авто с установками, имеющими прямой впрыск, оснастили японцы. Разработанный в Mitsubishi агрегат получил обозначение GDI, которое является аббревиатурой «Gasoline Direct Injection», что обозначается как непосредственный впрыск топлива. Чуть позже Toyota создала свой мотор – D4.

Прямой впрыск топлива

Со временем моторы, в которых используется прямой впрыск, появились и у других производителей:

  • Концерн VAG – TSI, FSI, TFSI;
  • Mercedes-Benz – CGI;
  • Ford – EcoBoost;
  • GM – EcoTech;

Непосредственный впрыск не является отдельным, совершенно новым типом, и относится он к инжекторным системам подачи топлива. Но в отличие от предшественников, топливо у него впрыскивается под давлением сразу в цилиндры, а не как раньше – во впускной коллектор, где бензин перемешивался с воздухом перед подачей в камеры сгорания.

Конструктивные особенности и принцип работы

Прямой впрыск бензина по принципу очень схож с дизелем. В конструкции такой системы питания имеется дополнительный насос, после которого бензин уже под давлением поступает на форсунки, установленные в ГБЦ с распылителями, находящимися в камере сгорания. В требуемый момент форсунка подает топливо в цилиндр, куда через впускной коллектор уже закачан воздух.

Конструкция данной системы питания включает:

  • бак с установленным в нем топливоподкачивающим насосом;
  • магистрали низкого давления;
  • фильтрующие элементы очистки топлива;
  • насос, создающий повышенное давление с установленным регулятором (ТНВД);
  • магистрали высокого давления;
  • рампа с форсунками;
  • перепускной и предохранительный клапаны.

Схема топливной системы с непосредственный впрыском

Назначение части элементов, такие как бак с насосом и фильтра описаны в других статьях. Поэтому рассмотрим назначение ряда узлов, использующихся только в системе прямого впрыска.

Одним из основных элементов в данной системе является насос высокого давления. Он обеспечивает поступление топлива под значительным давлением в топливную рампу. Конструкция его у разных производителей отличается — одно или многоплунжерная. Привод же осуществляется от распределительных валов.

Также в систему включены клапана, которые предотвращают превышение давления топлива в системе выше критических значений. В целом же регулировка давления выполняется в нескольких местах – на выходе из насоса высокого давления регулятором, который входит в конструкцию ТНВД. Имеется перепускной клапан, контролирующий давление на входе в насос. Предохранительный же клапан следит за давлением в рампе.

Работает все так: топливоподкачивающий насос из бака по магистрали низкого давления подает бензин на ТНВД, при этом бензин проходит через фильтр тонкой очистки топлива, где удаляются крупные примеси.

Плунжерные пары насоса создают давление топлива, которое при разных режимах работы двигателя варьируется от 3 до 11 МПа. Уже под давлением топливо по магистралям высокого давления поступает в рампу, которая распределяется по его форсункам.

Работа форсунок контролируется электронным блоком управления. При этом он основывается на показаниях множества датчиков двигателя, после анализа данных, он производит управление форсунками – момента впрыска, количества топлива и способа распыла.

Если на ТНВД подается количество топлива больше необходимого, то срабатывает перепускной клапан, который часть топлива возвращает в бак. Также часть топлива сбрасывается в бак в случае превышения давления в рампе, но делается это уже предохранительным клапаном.

Типы смесеобразования

Используя непосредственный впрыск топлива, инженерам удалось снизить расход бензина. И все достигнуто возможностью использования нескольких типов смесеобразования. То есть под определенные условия работы силовой установки подается свой тип смеси. Причем система контролирует и управляет не только подачей топлива, для обеспечения того или иного типа смесеобразования устанавливается еще и определенный режим подачи воздуха в цилиндры.

Всего же прямой впрыск способен обеспечить два основных типа смеси в цилиндрах:

  • Послойная;
  • Стехиометрическая гомогенная;

Это позволяет подобрать смесь, которая при определенной работе мотора, обеспечит наибольшее КПД.

Послойное смесеобразование позволяет двигателю функционировать на очень бедной смеси, в которой массовая часть воздуха больше топливной части в более чем 40 раз. То есть в цилиндры подается очень большое количество воздуха, а затем в нее добавляется немного топлива.

В нормальных условиях такая смесь от искры не загорается. Чтобы воспламенение произошло, конструкторы придали днищу поршня особую форму, обеспечивающую завихрение.

При таком смесеобразовании в камеру сгорания воздух, направленный заслонкой, поступает на большой скорости. В конце такта сжатия форсунка впрыскивает топливо, которое достигая днища поршня, за счет завихрения поднимается вверх к свече зажигания. В результате в зоне электродов смесь является обогащенной и легковоспламенимой, в то время как вокруг этой смеси находится воздух практически без частиц топлива. Поэтому такое смесеобразование и получило название послойного – внутри имеется слой с обогащенной смесью, поверх которого находится еще один слой, практически без топлива.

Данное смесеобразование обеспечивает минимальное потребление бензина, но и приготавливает такую смесь система лишь при равномерном движении, без резких ускорений.

Стехиометрическое смесеобразование – это изготовление топливной смеси в оптимальных пропорциях (14,7 части воздуха на 1 часть бензина), что обеспечивает максимальный выход мощности. Такая смесь уже воспламеняется легко, поэтому надобности в создании обогащенного слоя возле свечи не требуется, наоборот, для эффективного сгорания необходимо, чтобы бензин равномерно распределился в воздухе.

Поэтому топливо впрыскивается форсунками на также сжатия, и до воспламенения оно успевает хорошо перемещаться с воздухом.

Такое смесеобразование обеспечивается в цилиндрах во время ускорений, когда необходим максимальный выход мощности, а не экономичность.

Конструкторам пришлось также решать вопрос с переходом двигателя с бедной смеси на обогащенную во время резких ускорений. Чтобы не произошло детонационного сгорания, во время перехода используется двойной впрыск.

Первая закачка топлива выполняется на такте впуска, при этом топливо выступает в качестве охладителя стенок камеры сгорания, что исключает детонацию. Вторая порция бензина подается уже на конце такта сжатия.

Система непосредственного впрыска топлива благодаря применению сразу нескольких типов смесеобразования, позволяет неплохо экономить топливо без особого влияния на мощностные показатели.

Во время ускорений двигатель работает на обычной смеси, а после набора скорости, когда режим движения размеренный и без резких перепадов, силовая установка переходит на очень обедненную смесь, тем самым экономя топливо.

В этом и кроется основное достоинство такой системы питания. Но есть у нее и немаловажный недостаток. В топливном насосе высокого давления, а также в форсунках используются прецизионные пары с высокой степенью обработки. Именно они и являются слабым местом, поскольку эти пары очень чувствительны к качеству бензина. Наличие сторонних примесей, серы и воды способно вывести ТНВД и форсунки из строя. Дополнительно, бензин обладает очень слабыми смазывающими свойствами. Поэтому износ прецизионных пар выше, чем у того же дизельного мотора.

К тому же сама система непосредственной подачи топлива конструктивно более сложная и дорогостоящая, чем та же система раздельного впрыска.

Новые разработки

Конструкторы же на достигнутом не останавливаются. Своеобразную доработку прямого впрыска сделали в концерне VAG в силовом агрегате TFSI. У него систему питания объединили с турбокомпрессором.

Интересное решение предложила компания Orbital. Они разработали особую форсунку, которая помимо топлива впрыскивает в цилиндры еще и сжатый воздух, подающийся от дополнительного компрессора. Такая топливовоздушная смесь обладает отличной воспламеняемостью и хорошо сгорает. Но это пока только разработка и найдет ли она применение на авто, пока неизвестно.

В целом же, непосредственный впрыск сейчас является самой лучшей системой питания в плане экономичности и экологичности, хоть и имеются у нее свои недостатки.

Система непосредственного впрыска топлива в бензиновых двигателях: принцип работы

Система непосредственного впрыска топлива в бензиновых двигателях на сегодняшний день представляет собой наиболее совершенное и современное решение. Главной особенностью непосредственного впрыска можно считать то, что горючее подается в цилиндры напрямую.

По этой причине данную систему также часто называют прямым впрыском топлива. В этой статье мы рассмотрим, как работает двигатель с непосредственным впрыском топлива, а также какие преимущества и недостатки имеет такая схема.

Прямой впрыск топлива: устройство системы непосредственного впрыска

Как уже было сказано выше, горючее в подобных системах питания подается непосредственно в камеру сгорания двигателя. Это значит, что форсунки распыляют бензин не во впускном коллекторе, после чего топливно-воздушная смесь поступает через впускной клапан в цилиндр, а впрыскивают топливо в камеру сгорания напрямую.

Например, концерн VAG представил ряд моделей Audi и Volkswagen с атмосферными и турбированными бензиновыми двигателям TFSI, FSI и TSI, которые получили непосредственный впрыск топлива. Также двигатели с прямым впрыском производит компания BMW, Ford, GM, Mercedes и многие другие.

Такое широкое распространение непосредственный впрыск топлива получил благодаря высокой экономичности системы (около 10-15% по сравнению с распределенным впрыском), а также более полноценному сгоранию рабочей смеси в цилиндрах и снижению уровня токсичности отработавших газов.

Система непосредственного впрыска: конструктивные особенности

Итак, давайте в качестве примера возьмем двигатель FSI с его так называемым «послойным» впрыском. Система включает в себя следующие элементы:

  • контур высокого давления;
  • бензиновый ТНВД;
  • регулятор давления;
  • топливную рампу;
  • датчик высокого давления;
  • инжекторные форсунки;

Начнем с топливного насоса. Указанный насос создает высокое давление, под которым топливо подается к топливной рампе, а также на форсунки. Насос имеет плунжеры (плунжеров может быть как несколько, так и один в насосах роторного типа) и приводится в действие от распредвала впускных клапанов.

Кстати, в схеме используется специальный клапан-предохранитель, который стоит в рейке. Указанный клапан нужен для того, чтобы избежать слишком высокого давления топлива и тем самым защитить отдельные элементы системы. Рост давления может возникать по причине того, что горючее имеет свойство расширяться при нагреве.

Датчик высокого давления является устройством, которое измеряет давление в топливной рейке. Сигналы от датчика передаются на ЭБУ (электронный блок управления двигателем), который, в свою очередь, способен изменять давление в топливной рейке.

Если же говорить о системе прямого впрыска, вместе с датчиком высокого давления топлива для ее работы задействованы: датчик коленчатого вала, ДПРВ, датчик положения дроссельной заслонки, воздухорасходомер, датчик температуры воздуха во впускном коллекторе, датчик температуры ОЖ и т.д.

Благодаря работе этих датчиков на ЭБУ поступает нужная информация, после чего блок посылает сигналы на исполнительные устройства. Это позволяет добиться слаженной и точной работы электромагнитных клапанов, форсунок, предохранительного клапана и ряда других элементов.

Как работает система непосредственного впрыска топлива

Главным плюсом непосредственного впрыска является возможность добиться различных типов смесеобразования. Другим словами, такая система питания способна гибко изменять состав рабочей топливно-воздушной смеси с учетом режима работы двигателя, его температуры, нагрузки на ДВС и т.д.

  • Послойное смесеобразование задействуется тогда, когда нагрузки на двигатель низкие или средние, а обороты коленвала небольшие. Если просто, в таких режимах смесь несколько обедняется в целях экономии. Стехиометрическое смесеобразование предполагает приготовление такой смеси, которая легко воспламеняется, при этом не является слишком обогащенной.
  • Гомогенное смесеобразование позволяет получить так называемую «мощностную» смесь, которая нужна при больших нагрузках на двигатель. На обедненной гомогенной смеси в целях дополнительной экономии силовой агрегат работает на переходных режимах.
  • Когда задействован режим послойного смесеобразования, дроссельная заслонка широко открыта, при этом впускные заслонки находятся в закрытом состоянии. В камеру сгорания воздух подается с высокой скоростью, возникают завихрения воздушных потоков. Горючее впрыскивается ближе к концу такта сжатия, впрыск производится в область расположения свечи зажигания.

За короткое время до того, как на свече появится искра, образуется топливно-воздушная смесь, в которой коэффициент избыточного воздуха составляет 1.5-3. Далее смесь воспламеняется от искры, при этом вокруг зоны воспламенения сохраняется достаточно количество воздуха. Указанный воздух выполняет функцию температурного «изолятора».

В этом случае горючее впрыскивается еще на такте впуска, в результате чего удается получить однородную смесь. Избыток воздуха имеет коэффициент, близкий к единице. Такая смесь легко воспламеняется и полноценно сгорает по всему объему камеры сгорания.

Обедненная гомогенная смесь создается тогда, когда дроссельная заслонка полностью открыта, а впускные заслонки закрыты. В этом случае воздух активно движется в цилиндре, а впрыск горючего приходится на такт впуска. ЭСУД поддерживает избыток воздуха на отметке 1.5.

Дополнительно к чистому воздуху могут быть добавлены отработавшие газы. Это происходит благодаря работе системы рециркуляции отработавших газов EGR. В результате выхлоп повторно «догорает» в цилиндрах без ущерба для мотора. При этом снижается уровень выброса вредных веществ в атмосферу.

Что в итоге

Как видно, прямой впрыск позволяет добиться не только экономии топлива, но и хорошей отдачи от двигателя как в режимах низких и средних, так и высоких нагрузок. Другими словами, наличие непосредственного впрыска означает, что оптимальный состав смеси будет поддерживаться на всех режимах работы ДВС.

Что касается недостатков, к минусам прямого впрыска можно отнести разве что повышенную сложность во время ремонта и цену запчастей, а также высокую чувствительность системы к качеству горючего и состоянию фильтров топлива и воздуха.

Устройство и схема работы инжектора. Плюсы и минусы инжектора по сравнению с карбюратором. Часты неисправности инжекторных систем питания. Полезные советы.

Тюнинг топливной системы атмосферного и турбо двигателя. Производительность и энергопотребление бензонасоса, выбор топливных форсунок, регуляторы давления.

Установка карбюратора вместо инжектора, особенности процесса замены системы впрыска. Замена карбюратора на инжекторный электронный впрыск. Рекомендации.

Что такое моноинжектор: главные отличия и особенности одноточечной системы впрыска топлива. Как проверить и самостоятельно настроить моновпрыск .

Устройство и схема работы системы питания дизельного двигателя. Особенности топлива и его подачи , основные компоненты системы питания, турбодизельный ДВС.

Конструкция дизельного топливного насоса высокого давления, потенциальные неисправности, схема и принцип работы на примере устройства системы топливоподачи.

Несовершенство непосредственности: надежность и проблемы моторов с прямым впрыском

«В новый век – с новой системой питания!». Похоже, с таким девизом европейские производители стали внедрять технологию. А что им оставалось? Требования по снижению расхода топлива заставляли делать моторы сложнее, к тому же непосредственный впрыск (особенно в сочетании с наддувом) позволял увеличить мощность. И при этом оставлял мотор вполне экономичным на малой нагрузке. Начал входить в моду и даунсайз – постепенно для машины С-класса стало вполне нормальным иметь мотор объемом в литр, а мощные авто начинаются с объема в 1,4. Даже седаны D+ и Е классов не брезгуют моторами 1,4 и 1,6 с турбонаддувом.

Снова те же грабли, но в XXI веке

Собственно о минусах подобной системы питания было известно с самого начала. Сложность и высокая стоимость сюрпризом не были – опыт внедрения непосредственного впрыска накопился изрядный. Надежность сложных систем честно постарались увеличить. Правда, цену особенно опустить не пытались.

Как известно, для подачи топлива непосредственно в цилиндры нужен насос высокого давления. Вообще-то и в системах «обычного» распределенного впрыска в системе питания давление немаленькое, но у прямого впрыска оно примерно в 10 раз больше.

На дизельных моторах непосредственный впрыск и ТНВД появился существенно раньше, и ресурс узлов был не таким уж низким. У бензиновых все получилось иначе: насосы оказались весьма недолговечными. Почему? Потому что дизтопливо имеет более высокие смазочные свойства, чем бензин, и без специальных смазывающих присадок ресурс всех узлов трения очень мал.

Современные мембранные ТНВД не так зависят от смазки, как поршневые, но, тем не менее, нуждаются в ней. Да и в целом насос высокого давления – штука довольно хрупкая, любые загрязнения выведут его из строя. Улучшить ситуацию смогли введением стандарта на смазывающие присадки в топливе. Конечно, 15% масла, как в двухтактные моторы, добавлять не стали, но топливо Евро-4 и выше обязательно содержит небольшое количество специальных смазок. Не в последнюю очередь – именно для ТНВД на бензиновых машинах. Учитывая, что официальный запрет на продажу топлива Евро-3 вступил в России в силу лишь 1 января 2015 года, неудивительно, что «непосредственные» машины у нас жили так недолго и несчастливо.

С форсунками ситуация аналогичная, они дороже и менее надежны, чем на системах распределенного впрыска. Требования к их работе тоже намного выше. Небольшое изменение факела распыла, даже без изменения общего расхода подачи, ведет к серьезным нарушением работы мотора. В результате для сохранения работоспособности резко растут требования по чистоте топлива и рабочей температуре.

Пьезофорсунки еще и имеют ограниченное количество циклов срабатывания, чувствительны к перегреву, а также обладают склонностью при выходе из строя «лить» бензин, что может вызвать гидроудар при запуске. Особенно это характерно для очень распространенных «высокоточных» пьезофорсунок Bosch, которые имеют ограниченный ресурс, а компания на протяжении последних десяти лет не может создать действительно хорошо работающий вариант.

Склонность к закоксовке впускных клапанов и худшие условия их работы проявились на моторах Мицубиси довольно быстро. Обычно форсунки подают бензин на впускной клапан и охлаждают его. И заодно смывают с него отложения. У непосредственного мотора такой возможности нет, клапан греется сильнее, больше нагревает воздух, а масло из системы вентиляции картера и из сальника клапана постепенно образует «шубу», которая затрудняет газообмен и приводит к зависанию клапанов и его перегреву. Особенно тяжело приходится моторам с повышенным расходом масла, а в самой критической группе риска – моторы, которые часто работают с малой нагрузкой, то есть в пробках.

Плохие пусковые качества из-за неудовлетворительного испарения топлива при пуске тоже проявились давно. Оказалось, что оптимизация формы факела впрыска на холодном и горячем моторе должна производиться более тщательно. Любое попадание топлива на стенки цилиндра приводит к резкому увеличению количества несгоревшего топлива и попаданию его в масло. А при запуске при отрицательных температурах большое значение приобретает качество распыла бензина: оно должно оказаться намного выше, чем при обычной работе, и давление топлива на пуске должно быть очень высоким. Поначалу этого не учли.

Повышенное количество твердых частиц в выхлопе проявилось позже, когда непосредственный впрыск на европейских машинах уже стал мэйнстримом. Более точные исследования показали, что эта особенность смесеобразования роднит такой бензиновый мотор с дизелем. Действительно, в процессе работы образуются частички сажи, которые необходимо тоже как-то задерживать. Например, вводя сажевый фильтр, как на дизельных моторах. Компания Mercedes уже анонсировала подобную опцию для своих машин.

Попадание топлива в масло из-за неисправностей топливного насоса высокого давления – в общем-то чисто конструктивный недостаток насосов Bosch, но в силу их широкого распространения и общности конструкций насосов свойственен почти всем моторам с непосредственным впрыском. Бензин в масле не так уж и страшен, но в больших количествах ведет к снижению вязкости масла до критической, что приводит к повреждениям моторов. И, к тому же, дает повод многим «экспертам» говорить о том, что топливо является причиной «масляной чумы».

Что же делать?

Почти у всех проблем есть пути решения. Например, двойной впрыск, когда топливо подается и в цилиндры, и во впускной трубопровод – это справляется сразу со сложностью с закоксовкой клапанов, экологичностью и плохим запуском в холода. Такая схема применялась на некоторых двигателях Volkswagen EA888, но продавались они исключительно в США и были заточены под жесткие экологические нормы Калифорнии. Но в конце 2014-го комбинированный впрыск появился и у нас – на моторе 6AR-FE (2 литра, 150 л. с.) Toyota Camry последнего поколения. Пока сложно судить о надежности, ибо пробеги машин пока небольшие в основной массе, однако предпосылки хорошие.

Читать еще:  Конструкция основных элементов паровых турбин

Под капотом 2015–н.в. Toyota Camry XLE

С поршневыми кольцами и топливными насосами приходится разбираться чисто конструктивными методами, экспериментируя с формой – часто «дизайн» поршневой группы производители дорабатывают уже после того, как машина вышла на рынок и поразила всех угаром масла. Так, скажем, делала Toyota в 2005 году, доводя до ума моторы серии ZZ (еще без непосредственно впрыска), а позже – Volkswagen с уже упомянутыми выше EA888. Насосы высокого давления тоже стараются сделать надежнее – эта задача технически выполнима.

Но все непросто: система очень сложная и дорогая – накладным для производителей выходит не только себестоимость конечной продукции, но и исследования с экспериментами. А маркетологи не дают возможности по 10 лет заниматься испытаниями, требуют все более новых моторов с еще более привлекательными характеристиками.

Рискнуть в сегодняшнем автобизнесе репутацией производителя ненадежных машин считается делом благородным. Если что, всегда выручит отзывная кампания. Куда хуже – показаться производителем консервативным или, не дай бог, незацикленным на идее спасения планеты от выхлопных газов. Вот это, как мы видимо по примеру Volkswagen и Mitsubishi – действительно страшно. Тут можно и самостоятельность компании потерять, и топ-менеджмента лишиться.

Виды и особенности работы систем впрыска бензиновых двигателей

Система впрыска топлива применяется для дозированной подачи топлива в двигатель внутреннего сгорания в строго определенный момент времени. От характеристик данной системы зависит мощность, экономичность и экологический класс двигателя автомобиля. Системы впрыска могут иметь различную конструкцию и варианты исполнения, что характеризует их эффективность и сферу применения.

  1. Краткая история появления
  2. Виды систем впрыска бензиновых двигателей
  3. Моновпрыск, или центральный впрыск
  4. Распределенный впрыск (MPI)
  5. Непосредственный впрыск топлива (GDI)

Краткая история появления

Инжекторная система подачи топлива начала активно внедряться в 70-х годах, явившись реакцией на возросший уровень выбросов загрязняющих веществ в атмосферу. Она была заимствована в авиастроении и являлась экологически более безопасной альтернативой карбюраторному двигателю. Последний был оснащен механической системой подачи топлива, при которой топливо поступало в камеру сгорания за счет разницы давлений.

Первая система впрыска была практически полностью механической и отличалась малой эффективностью. Причиной этого был недостаточный уровень технического прогресса, который не мог полностью раскрыть ее потенциал. Ситуация изменилась в конце 90-х годов с развитием электронных систем управления работой двигателя. Электронный блок управления стал контролировать количество впрыскиваемого топлива в цилиндры и процентное соотношение компонентов топливовоздушной смеси.

Виды систем впрыска бензиновых двигателей

Существует несколько основных видов систем впрыска топлива, которые отличаются способом образования топливовоздушной смеси.

Моновпрыск, или центральный впрыск

Схема с центральным впрыском предусматривает наличие одной форсунки, которая расположена во впускном коллекторе. Такие системы впрыска можно найти только на старых легковых автомобилях. Она состоит из следующих элементов:

  • Регулятор давления – обеспечивает постоянную величину рабочего давления 0,1 МПа и предотвращает появление воздушных пробок в топливной системе.
  • Форсунка впрыска – осуществляет импульсную подачу бензина во впускной коллектор двигателя.
  • Дроссельная заслонка – выполняет регулирование объема подаваемого воздуха. Может иметь механический или электрический привод.
  • Блок управления – состоит из микропроцессора и блока памяти, который содержит эталонные данные характеристики впрыска топлива.
  • Датчики положения коленчатого вала двигателя, положения дроссельной заслонки, температуры и т.д.

Системы впрыска бензина с одной форсункой работают по следующей схеме:

  • Двигатель запущен.
  • Датчики считывают и передают информацию о состоянии системы в блок управления.
  • Полученные данные сравниваются с эталонной характеристикой, и, на основе этой информации, блок управления рассчитывает момент и длительность открытия форсунки.
  • На электромагнитную катушку направляется сигнал об открытии форсунки, что приводит к подаче топлива во впускной коллектор, где он смешивается с воздухом.
  • Смесь топлива и воздуха подается в цилиндры.

Распределенный впрыск (MPI)

Система с распределенным впрыском состоит из аналогичных элементов, но в такой конструкции предусмотрены отдельные форсунки для каждого цилиндра, которые могут открываться одновременно, попарно или по одной. Смешение воздуха и бензина происходит также во впускном коллекторе, но, в отличие от моновпрыска, подача топлива осуществляется только во впускные тракты соответствующих цилиндров.

Схема работы системы с распределенным впрыском

Управление осуществляется электроникой (KE-Jetronic, L-Jetronic). Это универсальные системы впрыска топлива Bosch, получившие широкое распространение.

Принцип действия распределенного впрыска:

  • В двигатель подается воздух.
  • При помощи ряда датчиков определяется объем воздуха, его температура, скорость вращения коленчатого вала, а также параметры положения дроссельной заслонки.
  • На основе полученных данных электронный блок управления определяет объем топлива, оптимальный для поступившего количества воздуха.
  • Подается сигнал, и соответствующие форсунки открываются на требуемый промежуток времени.

Непосредственный впрыск топлива (GDI)

Система предусматривает подачу бензина отдельными форсунками напрямую в камеры сгорания каждого цилиндра под высоким давлением, куда одновременно подается воздух. Эта система впрыска обеспечивает наиболее точную концентрацию топливовоздушной смеси, независимо от режима работы мотора. При этом смесь сгорает практически полностью, благодаря чему уменьшается объем вредных выбросов в атмосферу.

Схема работы системы непосредственного впрыска

Такая система впрыска имеет сложную конструкцию и восприимчива к качеству топлива, что делает ее дорогостоящей в производстве и эксплуатации. Поскольку форсунки работают в более агрессивных условиях, для корректной работы такой системы необходимо обеспечение высокого давления топлива, которое должно быть не менее 5 МПа.

Конструктивно система непосредственного впрыска включает в себя:

  • Топливный насос высокого давления.
  • Регулятор давления топлива.
  • Топливная рампа.
  • Предохранительный клапан (установлен на топливной рампе для защиты элементов системы от повышения давления больше допустимого уровня).
  • Датчик высокого давления.
  • Форсунки.

Электронная система впрыска такого типа от компании Bosch получила наименование MED-Motronic. Принцип ее действия зависит от вида смесеобразования:

  • Послойное – реализуется на малых и средних оборотах двигателя. Воздух подается в камеру сгорания на большой скорости. Топливо впрыскивается по направлению к свече зажигания и, смешиваясь на этом пути с воздухом, воспламеняется.
  • Стехиометрическое. При нажатии на педаль газа происходит открытие дроссельной заслонки и осуществляется впрыск топлива одновременно с подачей воздуха, после чего смесь воспламеняется и полностью сгорает.
  • Гомогенное. В цилиндрах провоцируется интенсивное движение воздуха, при этом на такте впуска происходит впрыск бензина.

Непосредственный впрыск топлива в бензиновом двигателе – наиболее перспективное направление в эволюции систем впрыска. Впервые он был реализован в 1996 году на легковых автомобилях Mitsubishi Galant, и сегодня его устанавливают на свои автомобили большинство крупнейших автопроизводителей.

Система впрыска топлива: как и что происходит?

Система впрыска топлива — это система , которая подает топливную жидкость в определенном количестве в цилиндры самого двигателя . Такая система используется на моторах и бензиновых , и дизельных , однако технология процесса работы отличается в этих двух случаях : в дизельном двигателе топливная жидкость подается под высоким давлением : соединяясь с раскаленным воздухом она возгорается практически за мгновение . В бензиновом двигателе дело обстоит немного иначе : при подаче топлива появляется топливно — воздушная смесь , возгорающегося в дальнейшем от искры свечи зажигания .

Историческая справка

Сейчас в мире инжекторный ( впрысковый ) двигатель почти совсем вытеснил ставшую устаревшей карбюраторную систему . Но так было не всегда . Впервые систему впрыскивания топлива применяли еще в военной авиации середины прошлого века . Тогда она еще не получила достаточного распространения в автомобилестроении : лишь в 90х годах XX столетия , из — за ухудшившейся экологической ситуации в мире , стало понятно , что в выхлопах карбюратора остается слишком много не догоревшего топлива . Ситуация с экологией стала ухудшаться – объемы выбросов опасных веществ в атмосферу стало носить критический характер . Изменения в машиностроении стали необходимостью и конструкция топливных систем кардинально изменилась со временем . Первыми компаниями , выпустившими автомобили с инжекторной системой , были всем известные : Mercedes — Benz , Volkswagen , BMW , Mitsubishi . Новое решение казалось идеальным , если бы ни одно « но »: эволюционное решение имело один минус – высокие требования к качеству топливным смесям , а при использовании менее качественных смесей появилась опасность выделения оксида азота , что привело привело к значительному усложнению мотора .

Какие системы бывают

Систему можно классифицировать по точке ее установки , а также по количеству топливных форсунок ( инжекторов ):

  1. Моновпрыск ( представляет собой одноточечный впрыск ).

Здесь единственная форсунка обслуживает сразу все камеры сгорания . Располагается , чаще всего , на местах самого карбюратора . Надежность в работе и проста : удобно расположена под потоками прохладного воздуха . Однако из — за возросших требований к экологичности ( требуется индивидуальная дозировка топливной смеси к каждому цилиндру ) становится все менее популярна .

  1. Многоточечный впрыск ( он распределяет определенными траекториями ).

Это дна один цилиндр приходится одна изолированная форсунка . Есть подвиды этой установке :

  • Одновременный — Когда все форсунки срабатывают одновременно .
  • Параллельно — попарный – парное открывание : перед моментом впуска , осуществляется открывание одной пары .

На сегодняшний день , применяется принцип фазированного впрыска , а параллельно — попарный чаще применяется при запуске в аварийном состоянии , когда некорректно работают датчики фаз .

  • Фазированный — все форсунки контролируются под индивидуальным управлением они открывается в начале самого впуска .
  • Непосредственный — впрыскивание топливной жидкости производится напрямую в цилиндр .

Достоинства

Инжекторы имеют достаточно много плюсов :

За счет дозированной подачи топлива уменьшается его расход . Даже в системах первых серий автомобилей , расход топлива в сравнении с карбюраторными уменьшается в среднем на 30 — 40 %. В современном мире разница увеличивается до двух раз у автомобилей схожей массы и рабочего объема .

  1. Повышение мощности двигателя .

Происходит особенно сильно на низких оборотах . Общее повышение составляет 7 — 10 % за счет более качественного наполнения цилиндров и более оптимального угла опережения зажигания .

  1. Экологичность .

Благодаря появлению датчиков по параметрам выхлопов , контролируется снижение токсичности .

  1. Упрощение и автоматизация запуска двигателя .
  2. Повышение динамических свойств автомобиля .

Возможности управления двигателем расширяются за счет моментальной реакции системы впрыскивания на каждую изменившуюся нагрузку .

  1. Независимость от погодных условий .

Как известно , карбюратор зависит от уровня атмосферного давления ( например , в горах ), что совершенно отсутствует у инжектора . В том числе под сильным наклоном влияния на работу инжектора не ощущается , что нельзя сказать о карбюраторе ( при повороте 15 градусов могут появиться перебои в работе ).

  1. Отсутствие необходимости в периодическом обслуживании .

Удобство инжекторной подаче топлива состоит в том , что имеются достаточно много возможностей для настройки параметров собственноручно , владельцем транспорта . По этой причине , единственное , что может потребоваться – это замена элементов , вышедших из строя .

  1. Повышенная защита от угона .

Блок электрических систем двигателем настроен так , что подача топливной смеси в мотор не будет осуществляться без полученного позволения от иммобилайзера .

  1. Нет сбора горючей смеси в выпускном тракте . Нет опасности попадания пламени во впускной тракт и последующего его возгорания при некорректной работе системы зажигания ( звук , похожий на хлопки , а в дальнейшем пожар или нарушение систем питания ). Благодаря тому , что в инжекторах горючее поступает лишь в момент открывания форсунки нужного цилиндра , топливо не может накопиться в каллекторе .
  2. Способность изменить высоту капота . В результате того , что система впрыска располагается не поверх двигателем , а по его бокам , появляется возможность понижения уровня капота , чего не скажешь о карбюраторной системе .

Недостатки

Конечно , и у инжекторной системы есть некоторые недостатки . Но с течением времени многие из них стали неактуальны , например высокая стоимость деталей , пониженная ремонтоспособность , необходимость в специализированном персонале при обслуживании . С развитием массового машиностроения , повышением надежности , а также возможность диагностики через мобильные устройства , эти проблемы уже в прошлом . Однако некоторые все же остались :

  1. К составу топлива все также остаются высокие требования .
  2. Зависимость от электропитания ( у вариантов автомобилей , контролируемых электроникой ).
  3. Повышенная вероятность пожара при ДТП . За счет подачи топлива под давлением . Для таких случаев работает контроллер , который отключает бензонасос в аварийных ситуациях .

Датчики топливной системы

При разной комплектации автомобиля может отличаться количество датчиков . Устанавливать их все , для нормальной работы , необязательна .

  1. Датчик кислорода . Он рассчитывает данные по содержанию кислорода в общем объеме отработанных газов .
  2. Датчик положения коленвала . Автомобиль не заведется при поломки данного датчика . Вы не сможете добраться до сервиса без помощи эвакуатора при неполадках с ДПКВ .
  3. Датчик массового расхода воздуха Поступающий объем воздуха и его расход двигателем рассчитывается именно этим датчиком .
  4. Датчик температуры охлаждающей жидкости . Для контроля температурного уровня охлаждающей жидкости , устанавливается данный датчик . Сигнал отправляется на блок управления , но на панели применяется другой датчик .
  5. Датчик скорости . Подает на приборную панель количество пробега .
  6. Датчик положения дроссельной заслонки Нагрузка , оказываемая на мотор , рассчитывается этим датчиком .
  7. Датчик детонации . При определении детонации в автомобиле , включается система ее гашения .
  8. Датчик фазы . Синхронизирует впрыск топлива . В аварийной ситуации , переводит двигатель на параллельно — попарную подачу горючего .

В итоге можно сказать , что система впрыска топлива сильно продвинулась за последние пятьдесят лет в своем технологическом совершенстве . Конечно , недостатки все еще остались , но однозначно , массовость в машиностроении , экология — все это непосредственно влияет на развитие двигателей автомобилей . Сейчас невероятно актуальна экологическая составляющая нашей планеты , поэтому разработчики автомобильных двигателей не имеют шансов остаться на том же уровне , что и сейчас , не вводя все новые и новые усовершенствованные методы переработки горючей смеси в двигателе .

Что такое система непосредственного впрыска топлива GDI

Как ни странно, но прямой или непосредственный впрыск топлива в бензиновых моторах появился раньше тех, которые он сейчас только начал вытеснять. В этом есть определённая логика, конструкторы прошлого ещё не знали о проблемах, с ним связанных, поэтому смело поступили так, как им подсказывала простая логика работы двигателя. Ведь это так просто – где топливо будет сгорать, туда его и надо подать, желательно под высоким давлением. Дизели всегда примерно так и работали, и неплохо получалось.

  1. Как это устроено и работает
  2. Принципиально разные способы впрыска
  3. Достоинства и недостатки реально работающих конструкций

Как это устроено и работает

Прямой перенос технологий непосредственного впрыска из авиации показал их преимущество перед преобладающими тогда двигателями с распылением бензина в карбюраторах, но массовое производство автомобилей, с присущими ему заботами о надёжности, стоимости и ремонтопригодности, заставили не спешить. Перспективная инжекторная система настоятельно требовала постепенности во внедрении, поэтому для начала серийная продукция получала схемы моновпрыска в модуль, очень похожий на карбюратор, или распределённого размещения форсунок по цилиндрам, но всё равно действующих в пределах впускного коллектора.

Столкнувшись с проблемами, разработчики топливных систем пытались экспериментировать, применяя схему форкамерного зажигания, а окончательно поместить форсунки в камеру сгорания смогли лишь совсем недавно. За новыми моторами закрепилась аббревиатура GDI (Gasoline Direct Injection), по мере попадания на российский вторичный рынок они тут же были названы «джедаями». С некоторой долей опаски и недоумения, ведь никаких видимых преимуществ это не давало, зато создавало много головной боли владельцам.

Вопрос вполне резонный – зачем усложнять, если распределённый впрыск и так прекрасно работает, моторы экономичны, легко пускаются, обеспечивают все существующие и перспективные экологические нормы. Но конструкторам приходится смотреть вперёд куда дальше, чем покупателям.

Организация непосредственного впрыска подразумевает наличие следующей аппаратуры:

  • подкачивающий бензонасос, под низким давлением поставляющий бензин из бака;
  • топливный насос высокого давления (ТНВД), создаёт необходимое для прямого впрыска давление бензина на входе в форсунки порядка сотни атмосфер;
  • форсунки непосредственного впрыска, электроуправляемые клапаны с распылителями, расположенные в камерах сгорания;
  • электронный блок управления, датчики и прочая аппаратура, свойственная системам впрыска с программным управлением.

Топливо подаётся под давлением, меньшим, чем у дизельных двигателей, что связано с легко распыляющимся бензином, но значительно большим, чем у систем впрыска в коллектор (MPI). Всё это позволяет более тонко организовать смесеобразование и получить новые возможности для совершенствования моторов.

Принципиально разные способы впрыска

Получить хорошее смешивание бензина с воздухом (гомогенизацию) достаточно несложно, с этим прекрасно справляются все системы распределённого впрыска. Разве что увеличенное давление в GDI даёт небольшой прирост качества распыла. Но основной причиной внедрения прямого впрыска стали иные причины.

На режимах холостого хода и малых нагрузок стало возможным работать на сверхбедных смесях. Такой состав поджечь искрой невозможно. Но если подать бензин в конце такта сжатия точно в область свечи, то смесеобразование станет послойным. Зажигание произойдёт в зоне нормального состава, топливо будет устойчиво воспламеняться и образовавшийся факел обеспечит полное сгорание в условиях избытка кислорода. Будет получена существенная экономия по расходу, а токсичность выхлопа станет минимальной.

На средних нагрузках питание происходит в обычном режиме. Топливо впрыскивается на такте впуска, благодаря качественному распылению и особой организации геометрии хорошо гомогенизируется и эффективно сгорает, давая одновременно экономию и необходимый крутящий момент.

При значительной нагрузке, когда от двигателя требуется мощность, близкая к максимальной, производится неоднократный впрыск. Это создаёт условия для дополнительного охлаждения заряда, что позволяет повысить степень сжатия без риска детонации. Смесь обогащается, что необходимо на мощностных режимах, но сгорает достаточно мягко.

Стали популярны системы комбинированного впрыска, когда в дополнение к GDI впускной коллектор комплектуется обычными форсунками MPI. Они выполняют сразу две функции – промывают впускные клапаны от последствий работы системы рециркуляции выхлопных газов (EGR) и поставляют в цилиндры дополнительное топливо на мощностных режимах. Усложнение конструкции даёт достаточный эффект для оправдания дополнительных затрат.

Достоинства и недостатки реально работающих конструкций

Всё идеально работает только при теоретическом рассмотрении системы прямого впрыска. На практике возникают сложности.

  1. Бензин обладает посредственной смазывающей способностью, в отличие от дизельного топлива. Поэтому ТНВД и форсунки работают в условиях дефицита смазки и быстро изнашиваются. При этом их цена очень высока, как и у любой прецизионной аппаратуры. Приходится предъявлять повышенные требования к качеству топлива, что создаёт проблемы при эксплуатации.
  2. Возрастает роль системы рециркуляции. Если не разбавлять смесь выхлопными газами, то при горении сверхбедных составов будут образовываться ядовитые азотистые соединения, нейтрализация которых малоэффективна и затратна. С этим столкнулись и разработчики дизельных двигателей в последних поколениях. Однако работа EGR в моторах с прямым впрыском быстро загрязняет канал впуска, поскольку клапаны уже не омываются бензином. Падают рабочие сечения, нагар покрывает стебли, клапан может просто зависнуть и встретиться с поршнем. Помогает описанный выше комбинированный впрыск и рекомендации периодически ездить на мощностных режимах.
  3. Наличие серы в товарных бензинах при высоких давлениях и температурах вызывает образование серной кислоты, которая разрушает форсунки и ТНВД. Это препятствует эксплуатации таких моторов в районах, где трудно заправиться высококачественным топливом.

Получается, что преимущества системы, а к ним можно отнести экономию топлива на режимах малых и средних нагрузок и простоту обеспечения экологических норм, не перевешивают в глазах водителей связанных с новыми технологиями затрат. Всем нравится, когда двигатель с прямым впрыском и турбонаддувом по расходу топлива приближается к хорошему дизелю, но ровно до того момента, с которого становится ясно во сколько это обходится. Но обратный путь вряд ли возможен, требования по выбросу вредных веществ и углекислого газа уже никто не отменит. А развитие техники постепенно устранит все недостатки в целом перспективного прямого впрыска.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector