0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Вечный электро двигатель своими руками

Как собрать простейший электродвигатель в домашних условиях?

Мы продолжаем открывать для Вас новые полезные электронные самоделки и сегодня расскажем о том, как сделать двигатель из батарейки, медной проволоки и магнита. Такой мини электродвигатель может использоваться, как подделка на столе у домашнего электрика. Собрать ее довольно просто, поэтому если Вам интересен данный вид занятий, далее мы предоставим подробную инструкцию с фото и видео примерами, чтобы сборка простейшего моторчика была понятной и доступной каждому!

Почему в быту часто применяются коллекторные двигатели

Коллекторный тип двигателя

Если брать фазу на 220В, принцип работы электродвигателя на коллекторе позволяет изготовить устройства в 2-3 раза менее массивные, нежели при использовании асинхронной конструкции. Это важно при изготовлении приборов: ручные блендеры, миксеры, мясорубки. Помимо прочего, асинхронный двигатель сложно разогнать выше 3000 оборотов в минуту, для коллекторных указанное ограничение отсутствует. Что делает устройства единственно пригодными для реализации конструкций центрифужных соковыжималок, не говоря уже о пылесосах, где скорость часто не ниже.

Отпадает вопрос, как сделать регулятор оборотов электродвигателя. Задача давно решена путём отсечки части цикла синусоиды питающего напряжения. Это возможно, ведь коллекторному двигателю нет разницы, питаться переменным или постоянным током. В первом случае падают характеристики, но с явлением мирятся по причине очевидных выгод. Работает электродвигатель коллекторного типа и в стиральной машине, и в посудомоечной. Хотя скорости сильно отличаются.

Легко сделать и реверс. Для этого меняется полярность напряжения на одной обмотке (если затронуть обе, направление вращения останется прежним). Иная задача – как сделать двигатель с подобным количеством составных частей. Сделать самостоятельно коллектор вряд ли удастся, но намотать заново и подобрать статор вполне реально. Заметим, что от числа секций ротора зависит скорость вращения (аналогично амплитуде питающего напряжения). А на статоре лишь пара полюсов.

Наконец, при использовании указанной конструкции удаётся создать устройство универсальное. Работает двигатель без труда и от переменного, и от постоянного тока. Просто на обмотке делают отвод, при включении от выпрямленного напряжения задействуют полностью витки, а при синусоидальном исключительно часть. Это позволяет сохранить номинальные параметры. Сделать примитивный электродвигатель коллекторного типа не выглядит простой задачей, зато удастся целиком приспособить параметры под собственные нужды.

Что делать, если самоделка не работает

Если вдруг Вы собрали вечный электродвигатель своими руками, но он не вращается, не спешите расстраиваться. Чаще всего причиной отсутствия вращения мотора является слишком большое расстояние между магнитом и катушкой. В этом случае Вам нужно всего лишь самому немного подрезать ножки, на которых держится вращающаяся часть.

Еще проверьте, хорошо ли Вы зачистили концы катушки и обеспечивается ли в этом месте контакт. Симметричность катушки также играет не маловажную роль, поэтому старайтесь делать все аккуратно и не спеша.

На днях показывал ребенку как работает электромотор. Вспомнил эксперимент по физике из школы.

  1. Батарейка АА
  2. Эмалированный провод 0.5 мм
  3. Магнит
  4. Две скрепки, размером примерно с батарейку
  5. Канцелярский скотч
  6. Пластилин

Загибаем часть скрепки.

Наматываем катушку из эмалированного провода. Делаем 6-7 витков. Концы провода фиксируем узелками. Затем зачищаем. Один конец полностью очищаем от изоляции, а другой только с одной стороны. (На фото правый конец зачищен снизу)

Фиксируем скрепки на батарейке скотчем. Устанавливаем магнит. Крепим всю конструкцию на столе при помощи пластилина. Далее надо правильно поставить катушку. Когда катушка установлена, зачищенные концы должны касаться скрепки. В катушке возникает магнитное поле, у нас получается электромагнит. Полюса постоянного магнита и катушки должны быть одинаковыми, то есть они должны отталкиваться. Сила отталкивания поворачивает катушку, один из концов теряет контакт и магнитное поле исчезает. По инерции катушка поворачивается, снова появляется контакт и цикл повторяется. Если магниты притягиваются, мотор крутится не будет. По этому один из магнитов надо будет перевернуть.

Электромагнит – это магнит, который работает (создаёт магнитное поле) только при протекании через катушку электрического тока. Чтобы сделать мощный электромагнит, нужно взять магнитопровод и обмотать его медной проволокой и просто пропустить ток по этой проволоке. Магнитопровод начнет намагничиваться катушкой и начнет притягивать железные предметы. Хотите мощный магнит – поднимайте напряжение и ток, экспериментируйте. А чтобы не мучится и не собирать магнит самому, можно просто достать катушку с магнитного пускателя (они бывают разные, на 220В/380В). Достаете эту катушку и внутрь вставляем кусок любой железяки (например, обычный толстый гвоздь) и включаем в сеть. Вот это будет по-настоящему не плохой магнит. А если у вас нет возможности достать катушку с магнитного пускателя, то сейчас рассмотрим, как сделать электромагнит самому.

Для сборки электромагнита вам понадобятся проволока, источник постоянного тока и сердечник. Теперь берем наш сердечник и мотаем медную проволоку на него (лучше виток витку, а не в навал – увеличится коэффициент полезного действия). Если хотим сделать мощный электро магнит, то мотаем в несколько слоев, т.е. когда намотали первый слой, переходим во второй слой, а потом мотаем третий слой. При намотке учитывайте, что то, что вы намотаете, эта катушка имеет реактивное сопротивление, и при протекании через эту катушку будет проходить меньший ток при большом реактивном сопротивлении. Но тоже учитывайте, нам нужен и важен ток, потому, что мы будем током намагничивать сердечник, который служит в качестве электро магнита. Но большой ток сильно будет нагревать катушку, по которой протекает ток, так что соотнесите эти три понятия: сопротивление катушки, ток и температура.

Читать еще:  Датчик температуры двигателя фиат мареа

При намотке провода выберите оптимальную толщину медной проволоки (где-то 0,5 мм). А можете и поэкспериментировать, учитывая, что чем меньше сечение проволоки, тем больше будет реактивное сопротивление и соответственно ток протекать будет меньший. Но если вы будите мотать толстым проводом (примерно 1мм), было бы не плохо, т.к. чем толще проводник, тем сильнее магнитное поле вокруг проводника и плюс ко всему будет протекать больший ток, т.к. реактивное сопротивление будет меньше. Так же ток будет зависеть и от частоты напряжения (если от переменного тока). Так же стоит сказать пару слов о слоях: чем больше слоев, тем больше магнитное поле катушки и тем сильнее будет намагничивать сердечник, т.к. при наложении слоев магнитные поля складываются.

Хорошо, катушку намотали, и сердечник внутрь вставили, теперь можно приступить к подаче напряжения на катушку. Подаем напряжение и начинаем увеличивать его (если у вас блок питания с регулировкой напряжения, то плавно поднимайте напряжение). Следим при этом чтобы наша катушка не грелась. Подбираем напряжение такое, чтобы при работе катушка была слегка теплой или просто теплой – это будет номинальный режим работы, а так же можно будет узнать номинальный ток и напряжение, замерив на катушке и узнать потребляемую мощность электромагнита, перемножив ток и напряжение.

Если вы собираетесь включать от розетки 220 вольт электромагнит, то вначале обязательно измерьте сопротивление катушки. При протекании через катушку тока в 1 Ампер сопротивление катушки должно быть 220 ом. Если 2 Ампера, то 110 Ом. Вот как считаем ТОК=напряжение/сопротивление= 220/110= 2 А.

Все, включили устройство. Попробуйте поднести гвоздик или скрепку – она должна притянуться. Если плохо притягивается или очень плохо держится, то домотайте слоев пять медной проволки: магнитное поле увеличится и сопротивление увеличится, а если сопротивление увеличится, то номинальные данные электро магнита изменятся и нужно будет перенастроить его.

Если хотите увеличить мощность магнита, то возьмите подковообразный сердечник и намотайте провод на две стороны, таким образом получится манит-подкова состоящий из сердечника и 2-ух катушек. Магнитные поля двух катушек сложатся, а значит, магнит в 2 раза будет работать мощнее. Большую роль играет диаметр и состав сердечника. При малом сечении получится слабый электромагнит, хоть если мы и подадим высокое напряжение, а вот если увеличим сечение сердечка, то у нас выйдет не плохой электромагнит. Да если еще сердечник будет из сплава железа и кобальта (этот сплав характеризуется хорошей магнитной проводимостью), то проводимость увеличится и за счет этого сердечник будет лучше намагничиваться полем катушки.

Выводы:

  1. Если хотим собрать мощный электромагнит, то мотаем максимальное количество слоев (диаметр проволоки не так важен).
  2. Сердечник лучше всего взять подковообразный (нужно только будет запитать 2-е катушки).
  3. Сердечник должен быть из сплава железа и кобальта.
  4. Ток по возможности должен протекать как можно больший, потому что именно он создает магнитное поле.

Электромагнит – это магнит, который в основе своей работы использует электричество. Его сила может изменяться под действием количества тока, которое через него протекает, а полюса магнита можно менять с помощью изменения направления потока электричества. При этом, электромагнит работает в результате создания магнитного поля проходящим током.

Сделать электромагнит в домашних условиях довольно-таки просто. Для этого вам нужен железный сердечник (в форме прута) и медная проволока, которую обматывают вокруг сердечника. Подключив медную обмотку к батарейке, железо начнет намагничиваться. Отключив батарейку, сердечник потеряет магнетизм.

Вам понадобиться:

  • Железный гвоздь (15-20 см.);
  • Изолированный медный провод (около 3-х метров);
  • Аккумулятор или несколько батареек;
  • Соединительные провода;
  • Изолента.

Зачистите концы медного провода, сняв изоляцию. Подключите к ним батарейки с помощью соединительных проводов.

Намотайте медную проволоку вокруг гвоздя. При этом помните, что чем больше витков вы сделаете вокруг «сердечника», тем сильнее магнит вы получите. Будь осторожны, не изолированная часть медной проволоки не должна соприкасаться с гвоздем.

Намотку следует делать в одном направлении, ведь от этого зависит направление магнитного поля. Если вы сделаете 2 обмотки в разном направлении, вы уменьшите суммарное магнитное поле, а значит и силу магнита.

Подсоедините концы медной обмотки к батарее (аккумулятору или батарейкам), заизолировав «голые» участки изолентой. Если вы сделали все правильно, ваш магнит заработает. При смене полярности подключения обмотки к батарее, вы смените полярность вашего магнита, но не качество его работы.

Читать еще:  Skoda octavia стук в двигателе

Если вы хотите увеличить силу вашего магнита, вам следует сделать больше витков обмотки вокруг стержня. Следует также учесть, что чем дальше новые витки будут от стержня, тем меньше влияние они будут оказывать на силу магнитного поля. Будьте осторожны, при увеличении тока, часть тепла будет отдаваться изоляционной обмотке, что может расплавить ее и «закоротить» саму обмотку. Испытывайте разные сердечники, изменяя материал, габариты. Проверить годиться ли материал для магнитного сердечника можно легко. Поднесите к нему обычный («постоянны») магнит, если будет притягиваться – смело используйте в качестве стержня.

В этом видеоролике канала Креосан показано, как сделать самостоятельно электрический магнит. Нужно взять трансформатор от микроволновки, распилить его и достать обмотки. Также подойдут и другие трансформаторы. Но мощные и доступные только в микроволновках.

Нам понадобится первичная обмотка. Мы его только включили в сеть, а он уже начинает вибрировать. Что же будет, когда он будет притягивать железо? Настало время испытать electromagnet. На него можно подавать 12, 24, 36, 48, 110, 220 вольт. При этом может быть постоянный и переменный ток. Включаем аккумулятор от ноутбука и посмотрим, на что способен самодельный . Берем орешек и при участии электромагнита плющим его дверью. Как видите, с орешком он легко расправился. Попробуем поднять что-то потяжелее. Например крышку от канализационного люка.

Есть идея простого измерителя .

Что делать, если самоделка не работает?

Если вдруг Вы собрали вечный электродвигатель своими руками, но он не вращается, не спешите расстраиваться. Чаще всего причиной отсутствия вращения мотора является слишком большое расстояние между магнитом и катушкой. В этом случае Вам нужно всего лишь самому немного подрезать ножки, на которых держится вращающаяся часть.

Вот и вся технология сборки самодельного магнитного электродвигателя в домашних условиях. Если Вы просмотрели видео уроки, то наверняка убедились, что сделать двигатель из батарейки, медной проволоки и магнита своими руками можно разными способами. Надеемся, что инструкция была для Вас интересной и полезной!

Это будет полезно знать:

Магнит от динамика, медная проволока и лампа для изготовления светильника

Самым простым способом привести в рабочее состояние люминесцентную лампу, является помещение ее в электромагнитное поле обычного магнита, который используется для работы в старых советских динамиках.

Устройство состоит из:

  • Круглый магнит;
  • Медная проволока.

Для изготовления данного устройства, в первую очередь необходимо извлечь магнит из динамика. Далее, используя молоток не применяя большой силы легкими ударами отбить металлические пластины с магнита.

Обратите внимание! Если пластины не отходят от магнита, можно замочить его на некоторое время в растворителе.

После того, как с магнита сняты пластины, необходимо его очистить от загрязнений. Для этого используйте обычную тряпку или ветошь.

Далее, производится изготовление обмотки. Для этого берется кусок медной проволоки в изоляции. Длины проволоки должно быть достаточно, чтобы сложить ее пополам и обмотать магнит пятью витками. Двойной конец проволоки продевается в получившееся ушко из проволоки.

После того как магнит обмотан, в центральную часть магнита вставляется обычная люминесцентная лампа. Данную конструкцию можно оснастить декоративными материалами и использовать как автономный светильник.

Почему с нами выгодно

Наша компания имеет ряд неоспоримых преимуществ по сравнению с конкурентами, работая с нами вы сможете:

  • Купить электродвигатель по привлекательной цене.
  • Получите быструю и качественную техподдержку, наши специалисты готовы в любую минуту ответить на все ваши вопросы.
  • Хороший ассортимент товаров.
  • Заводскую гарантийную поддержку.

Продажа электродвигателей – одна из сфер деятельности, в которой мы работаем очень успешно.

Что нужно знать прежде чем заказать электрический двигатель

Асинхронный трехфазный электрический двигатель – мотор который работает от трехфазной сети переменного электротока. Асинхронным он называется потому что в его конструкции разнятся частоты вращения ротора и поля статора.

Такие электромоторы являются наиболее востребованными во всем мире и на рынке нашей страны. Асинхронные двигатели применяют в качестве приводов для различных типов механизмов и практически во всех сферах народной промышленности.

В асинхронных электромоторах момент вращения меняется автоматически, и соответствует изменению момента сопротивления на валу. Такие двигатели обеспечивают самый высокий КПД при достаточной надежности, стоимости обслуживания и безопасности. Поэтому купить электродвигатель – разумное решение.

Такие моторы бывают с тяжелым, чугунным корпусом, а также более экономичные модели – с силуминовым. Более надежными и долговечными считаются конечно чугунные.

У нас вы сможете купить электродвигатель с качественной медной обмоткой, а не с алюминиевой, как предлагают дешевые китайские бренды. Такое устройство будет работать долго, и несомненно окупится.

История [ править | править код ]

Мендосинский мотор был изобретён в 1994 году американским конструктором и популяризатором науки Ларри Спрингом [1] . Назван по имени округа Мендосино в штате Калифорния, где проживает изобретатель.

Идея светового коммутируемого двигателя, где солнечная энергия преобразовывалась бы в солнечных батареях и питала отдельные катушки двигателя, была впервые описана Дэрилом Чапином в эксперименте с солнечной энергией в 1962 году [2] . Эксперимент был проведён в Bell Labs, где Чапин вместе со своими коллегами Кельвином Фуллером и Джеральдом Пирсоном изобрели современные солнечные элементы в 1954 году [3] . Вместо магнитной левитации двигатель Чапина использовал стеклянный цилиндр на острие иглы в качестве подшипника скольжения с очень низким трением.

Читать еще:  Что такое перегрузочная способность асинхронных двигателей

Строим солнечный двигатель

Солнечный двигатель часто используется в качестве бортового источника тока, применяемого в BEAM-роботах, которых часто называют «живущими» роботами (см. обсуждение BEAM-роботов в главе 8). Свое распространение солнечные двигатели получили благодаря работам Марка Тилдена, который сконструировал первый подобный двигатель. Другим изобретателем был Дэйв Хранкив из Канады, который построил свою версию солнечного двигателя для питания «танцующего» робота. Мне так понравились эти разработки, что я решил сделать свой вариант солнечного двигателя. В процессе работы мне удалось придумать новый вариант схемы, который увеличил его эффективность по сравнению с оригинальным вариантом.

На рис. 3.1 изображена электрическая схема солнечного двигателя. Рассмотрим ее работу. Солнечная батарея заряжает конденсатор емкостью 4700 мкФ. По мере заряда конденсатора, напряжение на нем возрастает. Однопереходный транзистор входит в режим колебаний и посылает импульс, отпирающий тиристор. Когда тиристор открыт, вся запасенная в конденсаторе энергия разряжается через двигатель с высоким КПД. Во время разряда конденсатора двигатель вращается. Потом происходит остановка и цикл повторяется.

Рис. 3.1. Схема солнечного двигателя

Схема солнечного двигателя проста и некритична к используемым деталям. Она может быть собрана на макетной плате, выводы элементов при этом соединены проводниками. Для желающих собрать двигатель на печатной плате – чертеж платы представлен на рис. 3.2. Печатная плата входит в набор для создания солнечного двигателя. На рис. 3.3 показана схема расположения деталей на печатной плате. На рис. 3.4 помещена фотография двигателя в сборе.

Рис. 3.2. Чертеж печатной платы

Рис. 3.3. Размещение деталей на печатной плате

Рис. 3.4. Солнечный двигатель в сборе

Список деталей солнечного двигателя

• транзистор 2N2646 (1)

• тиристор 2N5060 (1)

• конденсатор электролитический 22 мкФ (1)

• конденсатор электролитический 4700 мкФ (1)

• двигатель постоянного тока

• элемент солнечной батареи (2)

• резистор 200 кОм 0,25 Вт

• резистор 15 кОм 0,25 Вт

• резистор 2,2 кОм 0,25 Вт

Двигатель с высоким КПД

Далеко не все электродвигатели имеют высокий КПД. Например, небольшие моторчики постоянного тока из радионаборов, как правило, имеют низкий КПД. Для определения этого существует простая процедура. Повращайте пальцами ось двигателя. Если ротор вращается плавно и продолжает вращение, когда вы отпустите ось, то, возможно, это двигатель с высоким КПД. Если ось ротора поворачивается рывками, и вы чувствуете сопротивление, то, скорее всего, КПД такого двигателя невелик.

Особенности конструкции солнечного двигателя

Солнечные элементы, использованные в устройстве, имеют высокий КПД и высокое выходное напряжение. Для солнечных элементов типично выходное напряжение в пределах 0,5–0,7 В при различных токах, которые зависят от размеров элемента. Солнечный элемент, использованный в данной схеме, дает паспортное напряжение порядка 2,5 В, но без нагрузки он заряжает конденсатор до уровня 4,3 В.

Я уверен, что некоторые из тех, кто захочет построить подобную схему, уже думают о возможности более быстрого заряда емкости через увеличение количества солнечных элементов. Данной вещи делать не следует. Дополнительные элементы действительно увеличат ток заряда и, соответственно, сократят его время, но только в первом цикле. Для того чтобы тиристор закрылся и начался новый цикл, необходимо, чтобы ток, протекающий через тиристор, прекратился (или стал очень малым). А в случае, если солнечная батарея будет отдавать достаточно большой ток, то тиристор «залипнет» в открытом состоянии. Соответственно, вся энергия батареи будет через открытый тиристор рассеиваться на подключенной нагрузке. Конденсатор не будет заряжаться, и схема выйдет из циклического режима.

Для правильной работы детали схемы специальным образом подобраны. Единственный компонент, допускающий вариации в значительных пределах, это накопительный конденсатор. Меньшие значения емкости приведут к более быстрому циклу «заряд-разряд». Большие значения емкости или использование нескольких конденсаторов приведут к запасанию большего количества энергии и, соответственно, совершению большей работы, однако следует помнить, что при использовании подобных емкостей цикл «заряд-разряд» может сильно удлиниться.

Применение

Схема солнечного двигателя может находить массу новых и неожиданных применений, например, как бортовой источник энергии солнечного гоночного автомобильчика, источник питания реле, бакена, собранного на светодиодах, моторчика для передвижения робота или, как показано на рис. 3.5, устройства поворота американского флага.

Рис. 3.5. Поворот флажка с помощью солнечного двигателя

Привлекательность солнечного двигателя в том, что он может работать «вечно», пока не выйдет из строя какая-то из его частей, что может произойти через годы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector