0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Вакуумная схема управления двигателем

VW Passat B3 ремонт

  • VW Passat B3 (17)
  • Выхлопная система (5)
  • Двигатель (44)
  • Кузов и салон (32)
  • Подвеска (29)
  • Рулевое управление (9)
  • Система охлаждения и отопления (15)
  • Система питания и впрыска (25)
  • Тормозная система (22)
  • Трансмиссия (6)
  • Электрооборудование (49)
  • Видео «Про кота»

Устройство и работа системы климат контроля на Audi 100(A6) C4 (Часть 4). Механизмы, исполняющие команды от блока управления.

Сервопривод температурной заслонки (V68) с потенциометром (G92).

Рис 28 – Сервопривод температурной заслонки (V68) с потенциометром (G92).

Регулирование температуры воздуха из печки, осуществляется заслонкой (V68), ее привод расположен рядом с отопителем. Заслонка имеет два крайних положения “тепло” (весь поток воздуха идет через отопитель), “холод” (поток воздуха идет помимо радиатора отопителя).

Потенциометр (G92), встроенный в сервопривод заслонки, определяет ее крайние положения в текущий момент и передает эти показания в блок управления (E87).

Управление сервоприводом заслонки осуществляется блоком управления (E87) в зависимости от заданной температуры. Привод изменяет свое положение, поддерживая заданные параметры температуры в салоне в независимости от движения автомобиля и окружающих погодных условий.

Для лучшей герметизации и смешивания воздушных потоков в реальности температурная заслонка состоит из трех заслонок (Рис 28).

Рис 29 – Заслонки в отопителе.

3 – Температурная заслонка перед радиатором. 4 – Температурная заслонка после радиатора. 5 – Завихряющая заслонка.

Все заслонки соединены между собой рычажным механизмом и приводятся в действие одновременно. Завихряющая заслонка служит для лучшего смешивания воздушных потоков.

Сервопривод воздушной заслонки (V71) с потенциометром (G113).

Рис 30 – Сервопривод воздушной заслонки (V71) с потенциометром (G113).

Сервопривод воздушной заслонки (V71) установлен сверху на испарителе и связан напрямую с заслонкой.

Основная функция данной заслонки является уменьшение поперечного сечения воздуховода при движении автомобиля с высокой скоростью. Что позволяет регулировать поток воздуха в салон в независимости от скорости.

Данная заслонка управляется блоком управления (E87) в зависимости от величины скорости, оборотов вентилятора (v2) и температуры в салоне.

Диапазон работы заслонки лежит в пределах “открыта” (не влияет на поток воздуха) и “закрыта” (воздушный поток перекрыт).

Положение заслонки (V71) вычисляется потенциометром (G113) и передается в блок управления (E87).

Сервопривод центральной заслонки (V70) с потенциометром (G112).

Рис 31 – Сервопривод центральной заслонки (V70) с потенциометром (G112).

Для распределения потоков воздуха в автомобиле используется две заслонки центральная и ноги/стекло (V70 и V85). Привода этих заслонок располагаются на одном уровне в передней части отопителя (Рис 31) и (Рис 33).

Рис 32 – Заслонки в отопителе.

1 – Центральная заслонка. 2 – Заслонка ноги/стекло.

Центральная заслонка используется для переключения воздушного потока в центральные дефлекторы и к ногам.

Привод заслонки (V70) регулирует положение от “нижнее” (воздушный поток направлен в ноги), до положения “верхнее” (воздушный поток направлен в центральные дефлекторы).

Положение заслонки (V70) определяется потенциометром (G112), расположенным в приводе и передается в блок (E87).

Сервопривод заслонки ноги/стекла (V85) с потенциометром (G114).

Рис 33 – Сервопривод заслонки ноги/стекла (V85) с потенциометром (G114).

Заслонка ноги/стекла (V85) используется для переключения воздушного потока между дефлекторами стекол и обогрева ног.

Привод заслонки (V85) регулирует положение от “нижнее” (воздушный поток направлен в воздуховоды стекол), до положения “верхнее” (воздушный поток направлен в ноги).

Положение заслонки (V85) определяется потенциометром (G114), расположенным в приводе и передается в блок (E87).

Для корректной работы заслонок, следует провести их адаптацию.

Блок управления (J126).

Рис 34 – Блок управления (J126).

Блок управления (J126) служит для управления оборотами вентилятора (V2) и расположен на корпусе испарителя. Блок управления имеет радиатор, который располагается в воздушном потоке.

Управляющее напряжение для блока управления вентилятором (J126), рассчитывается блоком (E87), а он уже в свою очередь рассчитывает напряжение для управления самим вентилятором (V2) относительно массы. Плюс подается постоянно.

Вентилятор отопителя (V2).

Рис 35 – Вентилятор отопителя (V2).

Вентилятор (V2) установлен в корпусе отопителя. Заданное и фактическое напряжение на вентиляторе (V2) контролируется блоком управления (E87) через блок (J126).

Двухходовой клапан (N63).

Рис 36 – Двухходовой клапан (N63).

Двухходовой клапан (N63) управляет заслонками забора воздуха снаружи и заслонкой рециркуляции.

Двухходовой клапан (N63) установлен на испарителе и с помощью вакуумного привода управляет этими заслонками:

  • забор воздуха идет с улицы;
  • забор воздуха идет из салона;
Читать еще:  В чем проблема двигателя ситроен с4

Двухходовой клапан (N63) управляется блоком управления (E87) и включает режим рециркуляции в следующих случаях:

  • на панели управления нажата кнопка рециркуляции.
  • при включенном кондиционере, для интенсивного охлаждения воздуха в салоне автомобиля.

Двухходовой клапан (N147).

Рис 37 – Двухходовой клапан (N147).

Двухходовой клапан (N147) находится на корпусе отопителя.

Двухходовой клапан (N147) управляется блоком управления (E87), который в свою очередь управляет клапаном охлаждающей жидкости. Клапан охлаждающей жидкости установлен перед радиатором отопителя и служит для интенсивного охлаждения воздуха (в случае надобности), так как через радиатор отопителя прекращается циркуляция охлаждающей жидкости, что в свою очередь прекращает какой либо нагрев воздушного потока.

Вакуумная система трубок клапанов.

Рис 38 – Вакуумная система трубок.

1 – Вакуумная трубка к впускному коллектору на бензиновом двигателе или к вакуумному насосу на дизеле. 2 – Вакуумный бак. 3 – Обратный клапан. 4 – Двухходовой клапан охлаждающей жидкости (N147). 5 – Клапан охлаждающей жидкости. 6 – Вакуумный привод. 7 – Двухходовой клапан (N63).

Управление вентилятором охлаждения (V7).

Рис 39 – Вентилятор (V7).

Вентилятор (V7) служит для охлаждения охлаждающей жидкости в основном радиаторе и хладагента в конденсаторе при работе кондиционера.

Режим работы вентилятора (V7) зависит от температуры двигателя и от давления в системе кондиционирования.

Режим работы вентилятора (V7):

  1. 1-я скорость включается:
    • температура охлаждающей жидкости выше 95 градусов Цельсия.
    • включен компрессор кондиционера.
  2. 3-я скорость:
    • температура охлаждающей жидкости больше 102 градусов Цельсия.
    • датчик давление хладагента (F23) зафиксировал давление больше 15 бар.

Датчик высокого давления хладагента (F23).

Датчик высокого давления хладагента (F23) установлен слева на выходе конденсатора. При достижении давления в контуре хладагента выше 15 бар, срабатывает датчик (F23) и подает сигнал на реле (J135 – 3-я скорость электровентилятора), включая работу вентиляторов (V7) на 3-ю скорость, минуя при этом блок управления (E87). Первая скорость вращения вентилятора контролируется реле (J26 – 1-я скорость электровентилятора).

Рис 40 – Датчик высокого давления хладагента (F23).

Схема управления и работы климат контроля для 6 цил.

Рис 41 – Схема работы климат контроля.

Обозначения на схеме:

  • F7, F8, F11, F13, F42 – Предохранители.
  • F18 – Термодатчик включения вентилятора 2-х скоростной.
  • F23 – Датчик высокого давления хладагента.
  • F73 – Датчик низкого давления хладагента.
  • F76 – Электронный датчик температуры.
  • F118 – Датчик высокого давления хладагента (отключение муфты компрессора).
  • G17 – Датчик температуры наружного воздуха.
  • G56 – Датчик температуры в передней панели.
  • G86 – Датчик температуры крыши.
  • G89 – Датчик температуры всасываемого воздуха.
  • G92 – Потенциометр привода температурной заслонки (V68).
  • G106 – Индикатор температуры в приборной панели.
  • G109 – Датчик температуры в центральном воздуховоде.
  • G111 – Датчик температуры охлаждающей жидкости.
  • G112 – Потенциометр привода центральной заслонки (V70).
  • G113 – Потенциометр привода воздушной заслонки (V71).
  • G114 – Потенциометр привода заслонки ноги/стекло (V85).
  • J26 – Реле 1-й скорости вентилятора радиатора (2 реле в дополнительном блоке).
  • J44 – Реле электромагнитной муфты (9 реле в дополнительном блоке).
  • J126 – Блок управления вентилятором (V2)
  • J135 – Реле 3-й скорости вентилятора радиатора (3 реле в дополнительном блоке).
  • J192 – Блок управления двигателем. J201 – Защитный диод муфты компрессора.
  • J217 – Блок управления автоматической коробкой.
  • J268 – Блок управления для мини-Check System.
  • N25 – Магнитная муфта компрессора.
  • N 39 — Резистор вентилятора радиатора.
  • N63 – Двухходовой клапан заслонки свежего воздуха и рециркуляции.
  • N147 – Двухходовой клапан для охлаждающей жидкости.
  • V2 – Вентилятор отопителя.
  • V42 – Вентилятор для датчика в передней панели.
  • V68 – Сервопривод температурной заслонки.
  • V70 – Сервопривод центральной заслонки.
  • V71 – Сервопривод воздушной заслонки.
  • V85 – Сервопривод заслонки ноги/стекло.

* — Для автомобилей с автономным отопителем.

Вакуумный электронасос с регулированием.

Как было выше сказано, этот тип вакуумного насоса имеет датчик давления, который контролирует давление в усилителе тормозного привода. Эта величина давления сравнивается в блоке управления двигателем с той величиной, которая в нём записана. В зависимости от результатов сравнения вырабатывается сигнал для управления электродвигателем вакуумного насоса.

1-блок управления двигателем

2-вакуумный усилитель тормозного привода

4-к впускному трубопроводу

Эти вакуумные электронасосы установлены на автомобили Passat с 2001г, Audi A4, Audi A6 и др.

Типы, конструкция и принцип работы вакуумного усилителя

Прежде всего следует отметить, что вакуумные усилители используются в двух автомобильных системах:

  • В тормозной системе с гидравлическим приводом — вакуумный усилитель тормозов (ВУТ);
  • В сцеплении с гидравлическим приводом — вакуумный усилитель сцепления (ВУС).
Читать еще:  Что самое главное в двигатели

ВУТ находят применение на легковых, коммерческих и среднетоннажных транспортных средствах. ВУС устанавливается на грузовом транспорте, тракторах и различной колесной технике. Однако оба типа усилителей имеют одинаковое устройство, а их работа основана на одном физическом принципе.

ВУ делятся на две больших группы:

  • Однокамерные;
  • Двухкамерные.

Рассмотрим конструкцию и принцип действия ВУ на основе однокамерного устройства. В общем случае ВУ состоит из нескольких узлов и деталей:

  • Камера (она же корпус), разделенная подпружиненной диафрагмой на 2 полости;
  • Следящий клапан (клапан управления), шток которого непосредственно соединен с педалью сцепления/тормоза. Выступающая часть корпуса клапана и часть штока закрываются защитным гофрированным чехлом, в корпус клапана может встраиваться простейший воздушный фильтр;
  • Штуцер с обратным клапаном или без него для соединения камеры с впускным коллектором силового агрегата;
  • Шток, с одной стороны соединенный непосредственно с диафрагмой, а с другой — с ГТЦ или ГЦС.

В двухкамерных ВУ присутствует две установленных последовательно камеры с диафрагмами, которые работают на один шток привода ГТЦ или ГЦС. В механизме любого типа используются цилиндрические металлические камеры, диафрагмы тоже металлические, они имеют эластичный подвес (из резины), обеспечивающий легкое движение детали вдоль своей оси.

Камера ВУ делится диафрагмой на две полости: со стороны педали — атмосферная полость, со стороны цилиндра — вакуумная полость. Вакуумная полость всегда соединена с источником разряжения — обычно в его роли выступает впускной коллектор двигателя (падение давление в нем возникает при движении поршней вниз), однако в ТС с дизельными моторами может использоваться отдельная помпа. Атмосферная полость имеет соединение с атмосферой (через клапан управления) и с вакуумной полостью (через тот же клапан управления или отдельный клапан).

Работает вакуумный усилитель довольно просто. При отжатой педали клапан управления (следящий клапан) закрыт, однако обе полости сообщаются через отверстия, канал или отдельный клапан — в них поддерживается пониженное давление, диафрагма находится в равновесии и не движется ни в одну из сторон. В момент движении педали вперед срабатывает следящий клапан, он перекрывает канал между полостями и одновременно сообщает атмосферную полость с атмосферой, поэтому в ней давление резко возрастает. В результате на диафрагме возникает разность давлений, она под действием высокого атмосферного давления движется в сторону полости с низким давлением, и через шток воздействует на ГТЦ или ГЦС. За счет атмосферного давления усилие на педали повышается, чем достигается облегчение хода педали при торможении или выключении сцепления.

Если педаль остановится в каком-либо промежуточном положении, то следящий клапан закрывается (так как давление с обеих сторон его поршня или специальной реактивной шайбы выравнивается, и эти детали за счет действия пружины садятся на свое седло) и давление в атмосферной камере перестает изменяться. В результате движение диафрагмы и штока прекращается, связанный с ними ГТЦ или ГЦС остается в выбранном положении. При дальнейшем изменении положения педали клапан управления вновь открывается, описанные выше процессы продолжаются. Таким образом, клапан управления обеспечивает следящее действие системы, благодаря чему достигается пропорциональность нажатия педали и создаваемого всем механизмом усилия.

При отпуске педали следящий клапан перекрывается, разобщая атмосферную полость с атмосферой, при этом открываются отверстия между полостями. В результате в обеих полостях давление падает, и диафрагма и связанный с ней ГТЦ или ГЦС за счет усилия пружины возвращаются в исходное положение. В таком положении ВУ вновь готов к работе.

Как выше указывалось, наиболее часто источником вакуума для ВУ выступает впускной коллектор силового агрегата, из этого понятно, что при остановленном моторе данный узел работать не будет (правда, оставшийся в камере ВУ вакуум даже после остановки двигателя сможет обеспечить от одного до трех торможений). Также ВУ не будет работать и при разгерметизации камер или повреждения шланга подачи разрежения от мотора. Но тормозная система или привод сцепления в этом случае сохранит работоспособность, хотя для этого придется прилагать больше усилий. Дело в том, что педаль напрямую соединена с ГТЦ или ГЦС через два штока, проходящих вдоль оси всего ВУ. Так что при различных поломках штоки ВУ будут выполнять роль обычной тяги привода.

Как проверить вакуумный усилитель тормозов

Есть три характерных признака, по которым можно быстро, хотя и достаточно грубо оценить проблемы с ВУТ.

Читать еще:  Электронный датчик температуры двигателя для гранты

  1. Остановив двигатель надо сбросить остаточное давление в камерах, нажав несколько раз на педаль. После чего, удерживая педаль нажатой, запустить мотор. При исправном усилителе он должен сразу же включиться в работу, что проявится в дополнительном утапливании педали на несколько миллиметров при неизменном усилии ноги.
  2. Можно нажать несколько раз педаль при только что остановленном двигателе. В этом случае при каждом последующем нажатии ход педали должен уменьшаться, а усилие нарастать за счёт расходования остаточного вакуума, новый при остановленном моторе не создаётся. Если разницы нет, значит усилитель не держит давление, в нём есть неплотности.
  3. Если отсоединить от усилителя вакуумный шланг и заглушить его, то при нормально работающем ВУТ это никак не повлияет на двигатель. При наличии утечек мотор заработает ровнее и добавит оборотов холостого хода. Это не относится к трещинам в самом шланге.

При возникновении подозрений на исправность усилителя его лучше всего заменить на новый. Тормоза – не тот предмет, на котором стоит экономить. Но иногда его удаётся и отремонтировать.

История появления

Автомобилестроение начало набирать обороты в конце XIX века. На заре эволюции самобеглых экипажей тормозам уделялось мало внимания — они были просто не нужны. Трение в трансмиссиях было настолько велико, что транспортные средства замедлялись в достаточной степени при отсутствии тяги. Однако мощность и масса двигателей росла, и уже в начале XX века было запатентовано немало устройств, предназначенных для остановки транспортных средств.

Некоторые новшества того периода обогнали своё время. Например, уже через четыре года после появления автомобиля Карла Бенца, британский инженер Фредерик Ланчестер запатентовал дисковый тормоз. Понадобилось несколько десятилетий для того, чтобы это изобретение получило широкое признание.

Первое применение воздуха для торможения продемонстрировал на своей модели чикагский производитель Tincher. Давление создавалось небольшим насосом и его можно было использовать для торможения, накачки шин или подачи звукового сигнала. Автомобиль Pierce-Arrow модели 1928 года был пионером среди транспортных средств, оснащённых вакуумным усилителем тормозов, работающим по современной схеме.

Однако, несмотря на эффективность, до середины XX века подобные системы предлагались автопроизводителями только в качестве опции. Дело в том, что для эксплуатации барабанных тормозов усилия ноги на педали было достаточно. И лишь с распространением более эффективного способа торможения с помощью пары диск-колодка, сервоприводы стали стандартным оборудованием. Основными датами истории современного вакуумника можно считать:

  • 1920-е — работы нескольких изобретателей над приводами для авиации, использующими разрежение на впускном коллекторе.
  • 1927 г. — бельгийский инженер Альберт Девандре изобрёл вакуумный сервопривод тормозов.
  • 1928 г. — первый серийный автомобиль с ВУТ.
  • Вторая половина XX века — система становится обычным явлением для серийных моделей.

Подведем итоги

Как видно, вакуумник ВАЗ или любой другой машины является важным и ответственным элементом. От качества его работы напрямую будет зависеть усилие, которое водитель должен прикладывать при торможении. Само собой, любые неполадки в системе тормозов требуют немедленной диагностики и устранения. Также признаки, рассмотренные выше, позволяют определить возможные проблемы ВУТ, что позволяет вовремя выявить неисправность.

Только такой подход позволяет утверждать, что тормозная система обслужена и находится в исправном состоянии. Также исключительно в сочетании с правильно подобранной резиной/дисками и полной работоспособностью всех дополнительных систем (например, ABS) водитель получает полный контроль над авто и максимальную безопасность при езде и торможении.

Педаль тормоза мягкая после замены тормозных колодок: почему тормоза ватные, нужно ли прокачивать тормозную систему. На какие нюансы обратить внимание.

Педаль тормоза слишком тугая, не продавливается или стала мягкой, тормоза проваливаются: основные неисправности, диагностика и способы устранения неполадок.

Почему направляющие тормозного суппорта нужно смазывать, какую смазку лучше использовать для направляющих суппортов. На что обратить внимание, советы.

Почему на машине тормоза скрипят, слышен скрежет тормозов, свист или писк при торможении: основные причины. Скрипят тормозные колодки, что делать водителю.

Как правильно подобрать тормозные колодки для авто: устройство тормозной колодки, классы колодок передних и задних. Выбор лучших тормозных колодок, советы.

Смазка для подшипников ступиц: чем смазывать ступичные подшипники. Особенности выбора смазки, тонкости и нюансы, как смазать ступичные подшипники самому.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector