1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое рекуперативное торможение асинхронного двигателя

Эта таинственная рекуперация

Двигатель постоянного тока, стоящий в моноколесе, может работать как генератор, заряжая батареи на торможении. Однако возможность еще не означает, что рекуперация непременно есть. Из того, что у людей заряжались колеса при, например, спуске с горы, можно сделать вывод, что рекуперация в моноколесах все-таки используется, но ее точный вклад в торможение оставался неизвестным. Но недавно пользователи форума Электротранспорт.ру сделали полноценный ваттметр с логгером и посмотрели, что происходит с током и напряжением при езде. По результатам измерений рекуперация есть точно, но куда-то пропал еще один тип торможения.

Немного физики

Электродвигатели постоянного тока, которые стоят на моноколесах, имеют три варианта торможения.

Рекуперативное торможение. В этом случае двигатель превращается в генератор и переводит кинетическую энергию в электрический ток, который уходит в сеть (электровозы и метро) или в аккумуляторы (электрокары). Рекуперативное торможение возможно, когда скорость вращения превышает скорость идеального холостого хода.

Реостатное торможение. Здесь двигатель также работает, как генератор, но получаемая энергия уходит в нагрев тормозных резисторов. Довольно распространено на железной дороге.


Тормозные резисторы

Реверсивное торможение, оно же торможение противотоком или противовключением. В этом случае двигатель не превращается в генератор, но начинает тянуть в противоположную движению сторону. Например, если электромотор тянет вверх груз, и на этот груз запрыгивает хулиган, перевешивая возможности мотора, то груз начнет опускаться, а двигатель окажется в режиме реверсивного торможения. В таком режиме протекающий через обмотки ток гораздо выше, чем при нормальной работе, и это может создать определенные проблемы.

Специфика моноколеса

У многих моноколес нет передней и задней части, и контроллер не разгоняется и не тормозит, а все время решает задачу обратного маятника, пытаясь подъехать под ездока, который может пользоваться этим для эффектных трюков.


Например, здесь райдер очень резко тормозит и начинает разгоняться вправо.

Также, известно, что в конструкции моноколеса нет тормозных резисторов, и реостатное торможение в принципе невозможно. Теоретически, логично предположить, что в процессе торможения сначала на высокой скорости будет задействоваться рекуперативное торможение, которое на каком-то этапе перейдет в торможение противовключением, которое, если мы не прекратим давить на педаль в ту же сторону, перейдет уже в двигательный режим, и мы поедем в противоположную сторону. Но реальные измерения оказались очень любопытными.

Исследования на железе

Пользователь форума Drift3r собрал из Raspberry Pi и «nRF24L01+» ваттметр с логгером, который устанавливался в разрыв кабеля от аккумуляторных батарей.

В собранном виде на колесе другого пользователя Ripido

Ваттметр учитывал направление тока, там, где батареи заряжались, ток и мощность уходили в минус.


График в полном размере

Если посмотреть на красные линии, то получается, что в глубоком устоявшемся торможении не видны следы торможения противотоком — пока скорость падает, ток идет в батареи.

Интересно, что показатели встроенного логгера, если не учитывать ток по модулю, отличаются от данных ваттметра только на участках довольно резких маневров.


График в полном размере, Awhe, Vwhe — встроенный логгер колеса, Alog, Vlog — логи ваттметра

Гипотезы и возможные эксперименты

Как можно объяснить такие графики?

  1. Торможение противотоком пропало из-за усреднения или рассинхронизации данных, графики не отражают реального положения вещей.
  2. Очень низкое значение скорости идеального холостого хода позволяет тормозить почти до нуля, и переход на торможение противотоком мы не замечаем

Также, попробуем провести следующий мысленный эксперимент. Ситуация первая — мы катимся с горки со скоростью 20 км/ч. В этом случае, очевидно, работает рекуперация. Ситуация вторая — мы стоим на горке (моноколесо стоять не может, так что мы легко касаемся пальцами столба и за счет этого не заваливаемся набок). В этом случае мы, очевидно, работаем в тяговом режиме, потому что надо прикладывать усилие, чтобы не покатиться вниз. Ситуация третья — мы спускаемся со скоростью 1 миллиметр в секунду с крутой горки, придерживаясь за столб. В этом случае колесо, очевидно, работает в режиме противовключения, потому что итоговый баланс энергии отрицательный — она расходуется на то, чтобы не скатиться под горку быстрее, чем мы движемся. И где-то между ситуациями 1 и 3 у нас будет переходный момент, когда итоговый энергетический баланс будет околонулевым — скатываться быстрее будет выгодно энергетически, а движение медленнее будет требовать энергетических затрат.

Читать еще:  Шевроле ланос двигатель не сбрасывает обороты

Практическое применение

У всех этих рассуждений есть очень простые следствия:

Есть забавная история о том, как на трассе заряжали электромобиль Tesla — его взяли на буксир, и водитель Tesla давил на педаль тормоза, чтобы рекуперация заряжала батареи. С моноколесами то же самое — если у вас почти сел аккумулятор, пусть вас возьмет на буксир соратник на велосипеде, самокате, роликах или моноколесе (пожалуйста, берегите себя и не пробуйте цепляться за машины или общественный транспорт!).

У моноколес есть защита от перезаряда батарей. То есть, если вы оказались на вершине горы с полной батареей, попытка спуститься будет сопряжена с тревожными сигналами моноколеса о перезаряде аккумуляторов — обычно они начинают пищать и задирать педали (вместо горизонтального положения их передняя часть будет выше задней). Но это легко исправить — проехав метров сто вверх, желательно побыстрее, вы сможете спуститься на километр-два. Лайфхак повторять до окончания спуска.

Заключение

В публикации использованы фотографии пользователей Ripido и Drift3r, темы, где обсуждалась рекуперация тут и тут. Также использованы стоп-кадры из рекламного ролика с участием недавнего победителя конкурса моноколесных талантов Дамьена Гоме. Дамьен — профессиональный акробат, поэтому ролик, на мой взгляд, красив сам по себе и наглядно показывает возможности любого хорошего моноколеса.

Читайте также

Рекуперативное торможение асинхронных двигателей Основные сведения Электрическое торможение асинхронных двигателей ТОРМОЖЕНИЕ Электрическое торможение применяют только в. [читать подробенее]

Динамическое торможение двигателя параллельного возбуждения В схеме динамического торможения ( рис. 9.8, а ) используются контакт КТ тор­мозного контактора контакт КЛ линейного. Эти контакты всегда находятся в противоположном состоянии: если замкнут. [читать подробенее]

Скорость Скорость При переводе рукоятки во 2-е положение замыкается контакт SA4, через который образуется цепь катушки контактора 2-й скорости КМ4: линейный провод С – правый контакт QF1 – KV1 – КМ1 — KV2 – KV4 – КМ6 – 1КМ8 – SA4 – КМ5 – катушка КМ4 — левый контакт QF1 -. [читать подробенее]

Торможение противовключением Торможение СД. Механические характеристики в тормозных режимах Для СД можно использовать все три вида электрического торможения, а именно: 1. Торможение противовключением; 2. Рекуперативное торможение; 3. Динамическое торможение. . [читать подробенее]

Тормозные режимы ДПТ НВ Лекция 9Торможение– это принудительный переходный режим, предназначенный для частичной или полной остановки двигателя. При полной остановке угловая скорость двигателя изменяется от &. [читать подробенее]

Вначале рассмотрим общие вопросы осуществления рекуперативного торможения. Для того, чтобы начался процесс рекуперации (отдачи электроэнергии в контактную сеть) необходимо выполнить три условия: 1. Перевести ТЭД в генераторный режим – как правило, изменить направление. [читать подробенее]

Как работает система рекуперации

Работу подобной системы можно рассмотреть на примере рекуперации воздуха при вентиляции помещения. При замене воздуха в помещении устройство выполняет передачу части тепла от удаляемого воздуха подаваемому потоку.

Важно! При этом действии смешивания потоков не происходит. Таким способом достигается наибольшая энергоэффективность помещения при невысоком КПД теплообмена.

На повышение передачи тепла в этом случае влияют:

  • повышение температурной разницы;
  • отношение площади теплового соприкосновения к массе воздуха, текущего через теплообменник.

Снижение утечки тепла при вентиляции помещения – вот основная задача у системы рекуперации. Большая часть тепла не покидает помещение без толку, подогревает подаваемый извне воздух.

Как работает рекуперативное торможение

Рассмотрев устройство системы рекуперативного торможения, а так же за что отвечает определенная деталь, можно рассмотреть принцип работы всего механизма. Как уже говорили, принцип работы механизма двунаправленный, то есть он может, как вырабатывать электричество, так и потреблять.Вся работа механизма рекуперативного торможения начинается из оси автомобиля, как правило, это задняя ось. Электродвигатель, он же генератор может быть включен в трансмиссию или подсоединен к трансмиссии за счет передаточных механизмов. В момент торможения или езды накатом, электродвигатель переходит в режим генератора, тем самым вырабатывая электричество и преобразуя кинетическую энергию автомобиля. Полученное электричество подается на инвертор, он же в свою очередь преобразует (в данном случае может понижать или повышать) электроэнергию и подает на аккумуляторную батарею для накопления.

Не исключено, что в данной цепочке могут быть установлены различные контроллеры, дополнительные преобразователи и другие вспомогательные механизмы, которые способствуют работе рекуперативного торможения. Стоит помнить, что в момент работы генератора (выработки электроэнергии) двигатель внутреннего сгорания отключается от трансмиссии, в отдельных моделях автомобилей система вовсе его может заглушить автоматически, тем самым экономить топливо.

Читать еще:  Авенсис начал троить двигатель

Если рассматривать обратный процесс работы, подачу электричества на электродвигатель, то есть небольшие отличия. В таком случае, срабатывает сцепление, которое преобразует генератор в электродвигатель и тем самым подключает в помощь двигатель внутреннего сгорания. Поданное питание с аккумулятора проходит через инвертор и передается на электродвигатель, благодаря чему упрощается старт автомобиля с места. Такой же принцип работы механизма, когда автомобиль двигается на предельно небольшой скорости и только на электротяге.

Тормозить и запасать: системы рекуперации в современных машинах

Доказывать необходимость рекуперативного торможения, то есть такого, при котором энергия машины снова аккумулируется, чтобы быть потом использованной для разгона, никому было не нужно. Эффективность схемы еще с 60-х годов проверена на железной дороге. Но там используются электровозы, и энергия сразу возвращается в сеть. Машинам такой способ не очень подходит ввиду отсутствия на большинстве из них электромоторов…

А поскольку машины ездят не по рельсам, то и места торможения и разгона тоже не очень-то поддаются прогнозированию. Поэтому способ, используемый на некоторых станциях метрополитена, – расположение точек остановки на возвышенностях, что позволяет разгоняться за счет запаса потенциальной энергии и замедляться за счет подъема, тоже не востребован. Разве что места остановок автобусов традиционно стараются располагать на горках.

Маховик в вакууме

Исторически первой системой рекуперации для машин с ДВС стала система с механическим накоплением энергии во вращающемся маховике. Подобные системы применялись в основном на строительной технике, где крупные вращающиеся части использовались как накопитель энергии, а передача мощности шла через гидравлические или электросистемы.

Но область применения такого рода технологий оставалась узкой – в первую очередь это были большие экскаваторы и краны, часто портовые. Сделать систему более компактной и установить на легковой автомобиль просто никому не приходило в голову, любой способ реализации упирался в низкую стоимость энергии и высокую цену устройства.

При цене нефти менее 4 долларов за баррель внедрять нечто подобное на транспорте никому не приходило в голову, и даже после первых нефтяных кризисов запас по модернизации ДВС с лихвой перекрывал потребности в экономии топлива. Компания Volvo даже испытывала систему на модели 260 в 1980 году, но мощность порядка 10 киловатт со стальным маховиком не оправдали ожиданий, и программа была свернута.

Скачок технологий в 80-е годы позволил создать более эффективные системы накопления энергии на маховике, устранив основную проблему – вероятность взрывного разрушения маховика. Решили проблему просто: сделали маховик из нитей, которые при разрушении просто его тормозили. А помещение его в вакуумный контейнер и использование газовых подшипников позволило запасать энергию на весьма приличный срок, до нескольких дней, хотя большинство таких систем рассчитаны на короткий цикл работы, от поступления энергии на маховик до ее расходования проходит несколько минут или даже секунд.

Так работает, например, гоночная система KERS в Формуле-1. Есть и практические примеры ее реализации на условно серийных машинах, например на Porsche и Ferrari. Но на практике, скорее всего, распространения такая система не получит. Наряду с такими достоинствами, как очень высокая емкость и большая мощность накопления, в числе недостатков останутся и гироскопический эффект, и довольно высокие потери как в приводе, так и в самой подвеске маховика. Как итог – область применения этой технологии так и осталась узкоспецифичной, и пока перспектив к изменению ситуации не видно, развитие чисто электрических методов накопления энергии пока идет лучше, а выдающаяся удельная мощность маховиков-накопителей пока не пригодилась.

Потенциальное преимущество в надежности системы тоже вряд ли будет востребовано, надежность и простота сейчас не в почете. Единственным действительно перспективным и массовым направлением для данной технологии остаются автобусы. Например, Optare Solo с маховичным накопителем FlyBus или развозные грузовики и мусоровозы, делающие остановки через каждые несколько сотен метров. Система FlyBus или FlyBrid в версии «для всех» сделана инжиниринговой компанией Rikardo в сотрудничестве с компанией Torotrak, разработчиком тороидальных вариаторов большой мощности.

Читать еще:  Двигатель альфа 125 куб характеристики

И тут снова на горизонте появляется шведская компания. В версии, которую использовали на Volvo S60 в 2011 году, мощность системы составила 80 киловатт, масса – 60 килограммов, а обороты маховика – порядка 60 тысяч оборотов в минуту. Судя по этим показателям, вполне возможен рост мощности системы до «спортивных» величин, ведь обороты роторов могут быть даже выше 100 тысяч в минуту, но опять же, судя по отсутствию гибрида в модельной гамме компании, эксперименты с легковыми машинами сочли неудачными.

Жидкость и газ под давлением

Несколько перспективнее выглядит система пневмогидравлической рекуперации, наиболее известной у нас как Peugeot Hybrid Air. Она является хорошо отработанной схемой, хотя реально существующие с ней машины не так уж широко известны. Это в первую очередь… мусоровозы.

Десятки машин с системой Bosch и Eaton уже более десяти лет эксплуатируются в США, и их гибридный привод проявил себя как надежный и недорогой. Суть работы такой установки заключается в возможностях гидромотора, который при торможении закачивает рабочую жидкость в большой гидроаккумулятор – трубу со сжатым газом. При разгоне машины газ вытесняет жидкость, жидкость крутит тот же гидромотор и помогает экономить топливо. В системе нет дорогих аккумуляторов, и ресурс ее очень велик. Мощность гидромоторов тоже велика, а стоимость, наоборот, крайне низкая.

Одна загвоздка: гидроаккумулятор имеет большие габариты и массу, и реально его энергии хватает на один-два цикла разгона и торможения, пробег без включения ДВС составляет всего пару километров для легковой машины и сотни метров для грузовика. При использовании на автобусах или мусоровозах подобная система позволяет полностью отказаться от использования традиционных тормозных механизмов, гидромотор может замедлить машину вплоть до полной остановки. В этом пневмогидравлический рекуператор даже превосходит электрические системы, те при малой скорости вращения колес уже не эффективны.

Дополнительным плюсом является возможность запасти энергию надолго, на часы и дни. В отличие от маховиков, которые уже через десятки минут теряют солидную часть запасенной мощности. К сожалению, масштабные планы компании Peugeot были прохладно восприняты новыми акционерами из китайской Dongfeng, а также партнерами по разработке системы из Ford. Но судя по новостям, именно китайские грузовики Dongfeng могут оказаться следующими массовыми носителями этой технологии.

Электроторможение с рекуперацией

Главным конкурентом этих безусловно интересных, но обладающих множеством ограничений схем выступает уже классическая электрическая схема с электромотором, аккумуляторами или суперконденсаторами.

Обычное электрическое торможение и рекуперация хороши уже тем, что используются на железной дороге около 60 лет и отработаны до мелочей. Все конструктивные схемы с синхронными, асинхронными и коллекторными двигателями давно известны и рассчитаны. Энергия передается обратно в питающую сеть, запасается в аккумуляторы или суперконденсаторы и может быть использована через длительное время.

Основная беда электрических тормозов в том, что они плохо сочетаются с ДВС, и для эффективного использования электроэнергии пришлось совместить обычный двигатель внутреннего сгорания и всю атрибутику электромобиля – аккумуляторы и тяговый электродвигатель – в одном механизме. Получившиеся гибриды обычно так и называют просто «гибридами». И несмотря на сложность и высокую массу такой схемы, в данный момент она является единственной серийно использующейся в легковом автомобилестроении и уже весьма популярной.

Гибриды на данный момент оказываются самым перспективным направлением развития автомобилей с точки зрения снижения расхода топлива, а прогресс в создании аккумуляторных батарей и развитие так называемых «подзаряжаемых гибридов», по сути являющихся промежуточным звеном между чистыми электромобилями и гибридами, делает их важным элементом в эволюции персонального автотранспорта.

В 1997 году вышла первая серийная Toyota Prius, которая остается на данный момент самой популярной гибридной машиной и законодателем мод в своем классе. В ее схеме приняли решение использовать электромоторы малой мощности и недорогую никель-металлгидридную аккумуляторную батарею также малой мощности, а для компенсации этих недостатков наделили машину очень сложной трансмиссией со множеством режимов работы ДВС, электродвигателя и генератора. Успех этой схемы сильно повлиял на развитие подобных технологий у других производителей. Сейчас число моделей машин с гибридным приводом перевалило за два десятка.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector