0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое преднатяг в двигателе

Блокировки для а/м Nissan

Самоблокирующийся червячный дифференциал Nissan Patrol Y60, Y61 в передний редуктор, H233B, 31 шлиц на п/оси с преднатягом (СД67П)

Блокировка дифференциала для а/м Nissan Patrol Y60, Y61 в передний редуктор, 31 шлиц на п/оси
Тип дифференциала: самоблокирующийся червячный с цилиндрическими косозубыми шестернями.

Принцип работы: перераспределение крутящего момента между ведущими колёсами происходит автоматически при увеличении подводимого крутящего момента от мотора (на отстающее колесо).

Максимальный коэффициент блокировки — 70-80%.

Полной блокировки не наступает. Разблокируется при сбросе газа.

Взаимозаменяем со стандартными дифференциалами.

На дифференциалы распространяется гарантия 12 месяцев.

  • Блокировки для а/м Nissan

Блокировка дифференциала на Ниву (самоблок): доводим машину до совершенства

Сегодня мы рассмотрим изделия, позволяющие качественно улучшить трансмиссию Нивы. Их на рынке огромное множество. Мы постараемся внятно и доходчиво ответить на вопрос – какой самоблок лучше поставить на Ниву.

Содержание

  1. С чем имеем дело?
  2. Коэффициент, преднатяг и другие нюансы
  3. Разновидности блокировок на Ниву
    • Самоблок повышенного трения (LSD)
    • Принудительная блокировка
  4. Как определиться, что установить?

С чем имеем дело?

Что такое дифференциал или как его иногда сокращённо называют «диф». Зачем он нужен?! Латинское слово «differentia» и схожее английское «different» переводятся на русский язык почти одинаково: «разница» или «разный». Существует ещё одно определение дифа – планетарная передача.

Назначение данного элемента – передавать посредством вращения мощность силового агрегата без её потери на полуоси с закреплёнными на них колёсами. Дифференциал заставляет их вращаться с разной частотой в зависимости от условий езды. Внутри поворота колесо совершает гораздо меньше оборотов, чем то, которое идёт по длинному радиусу. Будь на месте «планетарки» обыкновенная сплошная ось, вероятная паразитная циркуляция мощности гарантировала бы снижение контроля над машиной, потерю сцепления с асфальтом, существенный износ трансмиссии, невероятный расход горючего и т.д. Дифференциал же «сцепляет» привода одной оси, убирает «паразитное» явление, без потери мощности.

Межколёсный дифференциал присутствует почти во всех машинах. Он располагается обычно на ведущей оси. Осей, на которые «планетарка» раздаёт входящий поток мощности, может быть две и более.

Коэффициент, преднатяг и другие нюансы

Нива 2121 снабжена постоянным полным приводом, а потому кроме двух межколёсных дифференциалов у неё присутствует третий – межосевой, распределяющий момент между передком и задком.

Обычного «свободного» дифа владельцу Нивы не всегда хватает. Внедорожник покупают, чтобы гонять, как тёщу, по разному рельефу и покрытию: грязь, снег, лёд и т.д. Нередко автомобиль оказывается двумя колёсами на цепком покрытии, а другим бортом на скользкой текстуре. В такой ситуации его легко «потерять». Блокировка позволит не беспокоиться об этом.

Выбирая блоку нужно учитывать два важных момента – коэффициент блокировки и преднатяг. Первым обозначают соотношение момента на отстающем колесе с хорошим сцеплением и на забегающем, которое уже утратило контакт с дорогой. У свободного дифа коэффициент 1. У самоблокирующихся – до пятёрки. То бишь, отстающее колесо получит в 5 раз больше момента. Этот параметр иногда указывают в %. У червячных его задаёт наклон зубьев, у дисковых – конфигурация фрикционов.

А преднатяг это некий момент блокировки внутри корпуса изделия ещё до момента, когда он может потребоваться. Преимущественно в современных самоблоках преднатяг создаётся шайбами. Его можно настроить почти под любые требования водителя. Шайбы по мере износа можно заменить, а дифференциал продолжит верой-правдой служить ещё много лет. В то время, как зубья «червяка» и фрикционы «дисковой» конструкции рано или поздно изнашиваются, преднатяг снижается.

Правда, тут важно не «переборщить» – запредельный преднатяг сильно повышает нагрузку на сам диф и усиливает износ всех элементов трансмиссии.

Разновидности блокировок на Ниву

«Родные» дифференциалы можно заменить самоблокирующимся аналогом повышенного трения или же устройством, где «планетарка» блокируется принудительно. Для желающих самостоятельно установить самоблок на Ниву постараемся досконально объяснить в чём разница между червячной, винтовой или дисковой блокировкой. Оценим и каждую конструкцию, которая работает «с кнопки».

Самоблок повышенного трения (LSD)

Диф повышенного трения или limited slip differential устанавливается на различные спортивные машины. Такие штуки в России давно и большим тиражом серийно выпускают многие компании. В нём изначально заложено ограниченное проскальзывание. Эта штука самостоятельно выравнивает угловые скорости. Служит, по сути, прямой передачей, будто мощность передаётся на единственную «палку» на которой одинаково вращаются два колеса. Возможна установка и на автомобиль Нива 2124.

LSD различают по формату срабатывания – от возникновения разницы угловых скоростей (дисковые) или при изменении крутящего момента (винтовые).

Дисковая блокировка

Вариантов исполнения такой блокировки много, но у всех общий принцип – диф здесь оснащён двумя наборами дисков. Стоит появиться пробуксовке, фрикционы сжимаются и выравнивают угловые скорости. Диски похожи на фрикционы АКПП. Они никак не мешают при гражданской эксплуатации машины. Преднатяг тут создаёт пружина или же конические кольца.

В магазине SV-PARTS представлена на повседневную езду блокировка на Ниву для полуосей с 22 или 24 шлицами:

Читать еще:  Датчик обороты для двигателя ардуино

Это делает возможным применение данного изделия хоть на старую добрую Ниву, производства АВТОВАЗа, хоть на её «младшую» сестру – Chevrolet Niva:

Как устанавливается преднатяг

Регулировка преднатяга осуществляется путем установки пакета специальных пружинных шайб, которые распирают шестеренки внутри блокировки. Полный пакет таких спецшайб, сложенные все вместе составляют толщину 1 см, но все шайбы по толщине разные, чтобы можно было регулировать момент.

Чтобы отрегулировать преднатяг, потребуется:

  • динамометрический ключ стрелочный (ключ с щелчками не подходит, его придется долго настраивать);
  • самодельная спецдеталь, сделанная из простой внутренней гранаты (обрезан и к нему приварен болт) — смотрите ниже на видео;
  • комплект пружинных шайб (колечки);

Порядок регулировки преднатяга:

  1. Разобрать дифференциал блокировки (запоминаем последовательность). После снятия крышки вытаскиваем шнековую шестеренку полуоси; за ней идет узкая шестеренка с большим внутренним отверстием, но который имеет бортик; затем идут те самые регулировочные пружинные шайбы. Можно вытащить шнековые сателлиты (сами преднатяги), чтобы проверить какой у них износ.
  2. Установить новые шайбы.
  3. Собрать.
  4. Динамометрическим ключом и специальной самодельной деталью определяем момент затяжки. Когда ключ начинает проворачивать — в этот момент стрелка показывает момент натяга.

В этом видео рассмотрен вариант регулировки шайбами блокировки авто ВАЗ 2108.

Преднатяг до 5 кг не сплющивает до плоского состояния шайбы, такой момент натяжки считается ресурсным. Блокировка с натягом до 5 кг поможет сильно не терять своих характеристик около 4 лет. Любая блокировка с натягом в первые пару месяцев теряет около 1 кг натяга.

Специалисты рекомендуют делать для переднего дифференциала с самоблокировкой преднатяг не больше 5 кг, а для заднего дифференциала — не больше 7 кг. При максимальной величине, например, в 9 кг, все пружинные шайбы будут уже прижаты и эффект пружин будет потерян.

Выбор шагового двигателя

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ О РЕЖИМАХ РАБОТЫ ШАГОВОГО ДВИГАТЕЛЯ

Модель работы идеального шагового двигателя

Шаговый двигатель — устройство с постоянной мощностью, если мощность определить как момент, умноженный на скорость. Это означает, что крутящий момент обратно пропорционален скорости. Чтобы уяснить, почему мощность мотора не зависит от скорости, представим себе идеальный шаговый двигатель.

В идеальном двигателе нет трения, его момент пропорционален амперо-виткам обмоток и единственной электрической характеристикой является индуктивность. Индуктивность L характеризует способность обмотки запасать энергию в магнитном поле. Индуктивности обладают свойством индуктивного сопортивления, т.е. сопротивления переменному току, которое тем больше, чем быстрее меняется ток, а значит, индуктивное сопротивление возрастает вместе со скоростью вращения двигателя. По закону Ома ток прямо пропорционален напряжению и обратно пропорционален полному сопротивлению, откуда следует, что ток обмотки уменьшается при увеличении скорости вращения. Т.к. момент пропорционален амперо-виткам, а ток обратно пропорционален скорости, то момент также будет обратно пропорционален скорости. Т.е. при нулевой скорости момент стремится к бесконечности, при увеличении скорости момент(и ток) начинает стремиться к нулю.

Электрически, реальный двигатель отличается от идеального в основном ненулевым сопротивлением обмотки, а также ферромагнитными составляющими, которым свойствоенно насыщаться магнитным полем, что приводит к гистерезисным потерям и потерям на вихревые токи. Насыщение ограничивает момент, а вихревые токи и гистерезисные потери вызывают нагрев мотора. Рассмотрим кривую зависимости крутящего момента шагового двигателя от скорости.

Как видно из графика, при скорости ниже определенного предела, момент, а следовательно и ток, возрастают очень быстро, вплоть до уровней, приводящих к повреждению мотора. Чтобы этого избежать, драйвер должен ограничивать нарастание тока до определенной величины. Поскольку момент пропорционален току, момент будет постоянен начиная с момента удержания до порогового значения скорости, а при скорости выше порога — ток будет ограничен индуктивностью обмоток.

В результате, скорость-моментная характеристика идеального двигателя будет начинаться с отрезка, где момент постоянный, до точки, когда мотор перестанет генерировать и потреблять реактивную мощность. Реальный шаговый двигатель обладает потерями, которые изменяют идеальную скорость-моментную характеристику. Особенно велик вклад момента от зубцовых гармоник магнитного поля(его иногда указывают в документации на двигатель). Потери в двигателе есть всегда, и чем быстрее вращается вал шагового мотора, тем больше потери, и их также необходимо вычитать из идеальной характеристики.

Обратите внимание, как реальная мощность падает вместе с ростом скорости, в том числе и на отрезке «постоянной мощности». Скругление на переходной точке обусловлено переходным процессом в цепи — драйвер постепенно превращается из источника тока в источник напряжения.

Резонанс на средних частотах

Шаговый двигатель сильно подвержен резонансу, являясь по факту аналогом маятника «подвешенный на пружине груз», где грузом является ротор, а пружиной — магнитное поле, и имеет частоту собственных колебаний, зависящую от силы тока и инерции ротора. В момент, когда разность фаз момента и скорости достигает величины 180 град., возникает резонанс – изменение магнитного поля начинает совпадать со скоростью, и скорость ротора при позиционировании на новый шаг становится слишком велика. При резонансе значительная часть энергии магнитного поля уходит на преодоление инерции ротора при колебании около положения равновесия, что выражается в значительном падении крутящего момента на валу. Накопленная кинетическая энергия ротора расходуется при возникновении резонанса примерно за 1-10 сек, поэтому разогнать двигатель можно, пройдя зону резонанса без последствий, но работать сколь-нибудь продолжительное время не удастся – вал остановится. Для устранения этого явления в драйверах используются различные антирезонансные алгоритмы.

Читать еще:  Электрогенераторы своими руками из асинхронного двигателя

Мощность двигателя

Выходная мощность двигателя (скорость×момент) пропорциональна напряжению, деленному на квадратный корень из индуктивности. Если мы увеличим вдвое напряжение ШИМ, то получим другую кривую СМХ, лежащую выше, и мощность на участке постоянной мощности вырастет вдвое. С током иная картина. Рисунок ниже показывает, что будет при выставлении на драйвере тока в 2 раза больше номинального для двигателя. Мотор начинает выделять в 4 раза больше тепла, а момент на низких оборотах увеличивается менее чем в 2 раза из-за насыщения сердечников обмоток.

Как можно видеть, мощность не увеличивается вовсе. Всегда рекомендуется выставлять ток на драйвере равным номинальному значению для двигателя. Это в том числе снизит вибрации на низких частотах, улучшит характеристики хода в микрошаговом режиме.

Напряжение питания и нагрев двигателя

Основные причины нагрева двигателя: потери на сопротивлении обмоток и ферромагнитные потери. Первая часть всем знакома – это тепловая энергия, выделяющяяся на активном сопротивлении проводов обмоток, равная I2R. Вклад этого слагаемого велик только когда двигатель находится в режиме удержания, и резко уменьшается с возрастанием скорости двигателя. Ферромагнитными потерями назваются потери на токи Фуко и гистерезисные потери. Они зависят от изменения тока и, следовательно, от питающего напряжения, и выделяются в виде тепла. Как было сказано выше, мощность двигателя растет прямо пропорционально напряжению, однако ферромагнитные потери тоже растут, причем, в отличие от мощности, — нелинейно, что и ограничивает максимальное напряжения, которое можно использовать для драйвера. Можно сказать, что максимальная полезная мощность шагового двигателя определяется количеством тепла, которое может на нем безопасно выделяться. Поэтому не следует стараться выжать полкиловатта из двигателя 57 серии, подключив драйвер к источнику в 10 кВ – у напряжения есть разумные пределы. Их можно рассчитывать разными способами. Эмпирически было получено несколько оценок сверху для максимального питающего напряжения ШИМ-драйвера: оно не должно превышать номинальное напряжение обмоток более чем в 25 раз или величину 32√ L, где L – индуктивность обмотки.

Для наглядности ниже показан график, показывающий ферромагнитные потери для двигателя с номинальными характеристиками 4 А, 3 В.

Кратко о мощности шагового двигателя

Выбор двигателя и питающего напряжения целиком зависят от задач. В идеале, двигатель должен выдавать достаточный момент на максимальной планируемой скорости. Необходимо отличать момент от мощности двигателя: большой момент на низких скоростях не означает, что двигатель мощный. Выходная мощность – другой, более важный параметр, её примерно можно оценить по кривой скорости-момента. Теоретически, максимальная мощность, которую можно стабильно получать с драйвера, питаемого напряжением 80 В и выходным током 7 А примерно 250 Ватт(1/3 л.с.), в реальности же для этого потребуется 2 или 3 двигателя NEMA 34. Двигатели NEMA 23 слишком малы для отвода тепла, а NEMA 42 из-за размера не подходят по импедансу: если их номинальный ток меньше, чем 7 А, то напряжение будет больше 80 В, и наоборот. Момент от зубцовых гармоник в моторах NEMA 42 существенно больше, чем в малых моторах, и обязательно должен быть учтен при расчете выходной мощности. Другими словами, выходная мощность двигателей NEMA 42 падает быстрее, чем у меньших двигателей. NEMA 42 следует использовать, если требуется получить высокий момент на низких скоростях и нет смысла использовать мотор-редуктор.

О ЧЕМ ГОВОРЯТ ХАРАКТЕРИСТИКИ ШАГОВОГО ДВИГАТЕЛЯ

Если вы опустили все, написанное выше, или прочитали, но мало что поняли, данная глава поможет разобраться, как перейти к практической части. Несколько слов о размере двигателя. Развитие производства шаговых двигателей достигло больших успехов, и теперь шаговые двигатели одного размера разных производителей обладают очень схожими характеристиками. Именно размер двигателя задает рамки, в которых может изменяться его главная характеристика — кривая скорости-момента. Индуктивность обмотки показывает, насколько крута будет кривая СМХ при одинаковом напряжении питания драйвера с ШИМ: если мы возьмем 2 двигателя индентичного размера с разной индуктивностью, и будем управлять ими одним драйвером с одним и тем же питающим напряжением, полученные кривые СМХ будут отличаться крутизной.

Большая индуктивность потенциально дает вам возможность получить больший крутящий момент, но чтобы произвести такую конверсию, потребуется драйвер с большим напряжением питания — тогда кривая СМХ поднимется вверх пропорционально увеличению напряжения. На практике почти все фирмы производят моторы одного размера в двух исполнениях — «медленный» и «быстрый», с большой и малой индуктивностью. Причем «быстрые» модели пользуются большей популярностью — для них на высоких оборотах требуется меньшее напряжение, а значит более дешевые драйверы и источник питания. А если вдруг не хватает мощности — можно взять двигатель побольше. «Медленные» модели остаются для специфических применений — в случаях, когда от шагового привода не требуется больших скоростей, нужен большой момент удержания и т.п. Ток обмотки косвенно связан с крутящим моментом, но в основном он говорит о том, какой драйвер нужно будет подобрать к этому двигателю — он должен быть способен выдавать именно такой уровень тока. Напряжения питания обмотки показывает, какое постоянное(не ШИМ) напряжение можно подавать на обмотку — таково значение напряжения, используемое драйверами постоянного напряжения. Оно пригодится при вычислении максимально допустимого напряжения питания драйвера с ШИМ, и тоже косвенно связано с максимальным крутящим моментом.

Читать еще:  В чем плюсы чипованного двигателя

АЛГОРИТМ ПОДБОРА ШАГОВОГО ДВИГАТЕЛЯ

Так как же выбрать двигатель? Зависит от того, какими вы данными обладаете. По большому счету, выбор двигателя сводится к выбору 4 вещей — производителя, вида двигателя, размера и индуктивности. Первый параметр поддается оценке с трудом — мало у кого репрезентативная выборка образцов от разных поставщиков. Что касается вида двигателя, мы рекомендуем всегда, когда есть неопределенность в выборе, использовать биполярные шаговые двигатели с 4 выводами и малой индуктивностью. Т.е. выбор в основном заключается в выборе размера двигателя(в пределах одного размера характеристики двигателей с одной индуктивностью почти всех производителей практически совпадают). Для выбора конкретной модели можно использовать следующий алгоритм:

  • Рассчитайте максимальную скорость вращения V в об/сек, которую хотите получить от привода, и момент M, который необходимо получить от него на этой скорости(закладывайте в это значение запас в 25-40%).
  • Переведите скорость вращения в частоту полных шагов PPS, для стандартного двигателя с шагом 1.8 град PPS = 200 * V.
  • Выберите примерно подходящий на первый взгляд размер двигателя, из числа доступных моделей этого размера выберите двигатель с не самой большой индуктивностью.
  • Воспользуйтесь кривой СМХ, приводимой производителем, найдите на ней ваше значение PPS. Сверьтесь, достаточен ли момент, указанный на кривой.
  • Если момент, указанный на кривой слишком мал, рассмотрите двигатель размером побольше, если слишком велик — размером поменьше.

Однако, часто этот способ дает неверные результаты по причине большого количества факторов и допущений при расчете момента. Запросто можно получить, что для управления небольшим портальным фрезером с порталом весом 15 кг вдруг потребуются двигатели ST86-114. Чаще используют эмпирические способы, и они оказываются точнее. Один из таких способов — определение двигателей по весу портала и размеру рабочего поля. Например, выбор шагового мотора для горизонтальной передачи(оси X и Y) можно осуществить исходя из веса подвижной части, передачи, направляющих и материалов, планируемых к обработке. Для портальных станков классической компоновки, с передачей ШВП, шагом 5 мм на оборот, для обработки дерева и пластика, скорость холостого хода до 4000 мм/мин, в предположении, что направляющие оси без преднатяга и отъюстированы так, что подвижная часть ходит по ним без какого-либо сопротивления, можно порекомендовать следующие значения:

  • Вес подвижной части менее 5 кг — двигатель серии PL42 или аналогичный.
  • Вес подвижной части 5-10 кг — двигатель PL57-56 или аналогичный.
  • Вес подвижной части 10-23 кг — двигатель PL57-76 или аналогичный.
  • Вес подвижной части 23-35 кг — двигатель PL86-80 или аналогичный.
  • Вес подвижной части 35-50 кг — двигатель PL86-114 или аналогичный.

Совместно с этими оценками можно использовать оценки для размеров рабочего поля: Рабочее поле 0,1-0,5 кв.м. — двигатели PL57-76 или аналогичные. Рабочее поле 0,5-1 кв.м. — двигатели PL86-80 или аналогичные. Рабочее поле 1-1,5 кв.м. — двигатели PL86-114 или аналогичные. Если характеристики Вашего станка находятся в пограничных интервалах, скажем, вес портала 23 кг, поле около 0,5 кв. м., стоит использовать дополнительные оценочные методы. Еще один распространенный подход заключается в анализе готовых станков на рынке, которые близки к конструируемому по размерам и характеристикам — проверенная конструкция означает, что двигатели уже подобраны оптимальным образом, и можно взять их характеристики за основу.

И последнее, что можно порекомендовать — обратиться за консультацией к опытным специалистам.

Демпфер

Типичная ситуация: начинающий водитель недоволен отзывчивостью руля, слишком легким его движением и нестабильной работой. Наверняка найдутся «доброжелатели», которые посоветуют установить рулевой демпфер. Однако на самом деле стабильность руления намного больше определяется настройками заднего амортизатора — именно он разгружает вилку в начале движения. Если амортизатор слишком проседает, руль колбасит. А демпфер предотвращает колебания переднего колеса, его наличие проблему не решит.

Вот для чего действительно пригодится именно демпфер, так это для стабилизации управления при езде по неровной трассе на поворотах, но такая ситуация актуальна в основном для гонщиков. На практике, для дорожных мотоциклов и даже для многих спортивных демпфер не нужен — стабильность управления вполне достигается профессиональной настройкой подвески и адекватной комплектацией «железного коня».

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector