0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое люфты в двигателе

Как компенсировать люфт, который может помешать системе, работать в соответствии с проектной спецификацией?

По определению, управление движением включает в себя перемещение нагрузки от точки А в точку Б, за определенное время и с некоторой заданной точностью. Теоретически приводной механизм объединяющий двигатель, привод, редуктор, энкодер и актуатор будет перемещать нагрузку детерминированно – для этого достаточно только определить правильные параметры движения, и в результате вы получите правильную производительность. Проблема в том, что система движения работает не в теории, а в реальном мире, где она подвержена таким эффектам как трение и люфт. Эти эффекты могут ухудшить способность системы позиционировать нагрузку в заданной точке, хотя проблема связана с требованиями задачи. Давайте подробнее рассмотрим эффекты и некоторые доступные стратегии по снижению их влияния.


Рис. 1

Потери движения

В обычной системе движения устройство обратной связи контролирует вращение вала двигателя, отдавая либо значение абсолютное значение или импульсный поток/сигнал который может быть преобразован в положение вала (линейные двигатели работают аналогично). Проблема в том, что модель предполагает, что любое перемещение двигателя немедленно и точно переходит в нагрузку. В действительности, большинство систем включают в себя определенную задержку между моментом, когда мотор начинает вращение и моментом когда вращение передается на нагрузку (см. рис.1). Это приводит к определенной пространственной ошибке между заданным положением и действительным положением. Такой эффект известен как люфт или свободный ход, и он является важным фактором потери движения в механизмах.

Хотя люфт, как правило, связан с механизмами редукторов, в действительности является общесистемным явлением, которое включает в себя вклад почти всех компонентов системы, включая муфты, ремни и приводы. Редукторы могут иметь определенный зазор между зацепляющимися зубьями, иначе они не смогут поворачиваться. Перед тем, как приводной механизм сможет начать передавать вращение, шестерни должны закрыть этот зазор. Однако, если эти промежутки становятся слишком большими, редуктор приносит потерю движения, которое мы обсуждали выше. В случае соединений, это может проявляться в виде люфта до начала перемещения нагрузки. Даже одно устройство может создавать множественные вклады в общий эффект мертвого хода. В качестве сходного примера рассмотрим привод с шариковым ходовым винтом, так самое очевидное данный компонент вносит люфт в систему, поскольку гайка входит в зацепление с винтом, и это только начало. Кроме того шариковый ходовой винт вносит дополнительный люфт, когда деформируются шарики, изгибается корпус или винт растягивается под нагрузкой.
Мы можем количественно оценить люфт, рассматривая каждый элемент системы как комбинацию демпфера и пружины, моделируя эффект деталей как резонанс, возмущающий цепь привода. Чем больше жесткость компонента, тем выше постоянная пружины и быстрее скорость ее реакции. Так, вал двигателя будет иметь более высокую постоянную пружины, чем редуктор.

Постоянная пружины или коэффициент упругости играет важную роль в определении скорости реакции устройства. «Мягкое» устройство реагирует медленнее, что означает, что система показывает большее количество потерянного движения, чем абсолютно жесткая конструкция. Также важно иметь в виду, на какой стороне редукторного механизма расположен компонент. Причем это справедливо как для линейных механизмов (шариковые ходовые винты), так и для поворотных (редукторам) механизмов. Если соединение расположено на входной стороне и приводит к механизму с редукционным соотношением, величина мертвого хода на стороне входа будет уменьшено в соответствии с редукционным соотношением. Например, для редуктора с редукционным механизмом 10:1 мертвый ход добавленный сцеплением на входной стороне будет уменьшен в 10 раз, если наблюдать со стороны выхода механизма.

Борьба с люфтом — Как устранить люфт?

После того как мы описали люфт на уровне системы, следующий наш шаг – определить требует ли конкретное применение дальнейшего уменьшения люфта. Если приемлемо грубое позиционирование, например, в случае размещение коробок в стеке, дальнейшее увеличение точности, как правило, не нужно. Если же применение требует точного позиционирования или быстрого времени отклика, например как рабочий инструмент ЧПУ станка, который должен выдерживать миллисекундные допуски по времени и тысячные дюйма при перемещении, могут потребоваться другие методы компенсации мертвого хода чтобы избежать некачественной обработки поверхности.

Читать еще:  Аккумулятор от ups для запуска двигателя


Рис. 2

Люфт может быть устранен механическим или электронным способами. Механический подход можно разделить на три подтипа. Общим для всех этих типов методом является предварительная нагрузка компонентов, для того чтобы выбрать люфт, такая нагрузка может быть сделана как непосредственной механической нагрузкой, так и введением в конструкцию пружинной нагружающей системы. Большое число коммерчески доступных редукторов с нулевым люфтом для нивелирования мертвого хода используют давление от противоположного колеса в паре шестеренчатой передачи, чтобы убрать зазоры до включения системы (рис.2). В случае системы с зубчатой рейкой применяются две шестерни стоящие на одной рейке, которые могут быть дополнительно подпружинены. Вал двигателя будет передавать движение на эту систему, и вращать шестерни. Следующий подход можно рассматривать как дополнительный к первому, он заключается в использовании устройств с нулевым люфтом построенных с дополнительной точностью для минимизации зазоров. Третий подход – это использование некоторых видов зубчатых зацеплений, которые сами по себе имеют нулевой люфт, таких как циклоидное зубчатое зацепление и напряженная волновая передача. Такой тип передачи обычно используется в робототехнике, где необходимо быстрое перемещение нагрузки с точным ее позиционированием (см. рис.3).


Рис. 3

Однако у любого из подходов есть обратная сторона. Так, в случае предварительной нагрузки, может ускориться износ детали. Современные ЧПУ часто используют дополнительный двигатель и программное обеспечение для установки нагружающей пружины, чтобы создавать правильную предварительную нагрузку на зацепление. Предварительная нагрузка также должна рассматриваться как часть общего значения нагрузки на бюджет крутящего момента редуктора. Добавление предварительной нагрузки (см. предварительная нагрузка шарикоподшипников) уменьшает и ограничивает крутящий момент, который может передавать редуктор. Наиболее важные механические решения, как правило, уязвимы для изменений вносимых износом и изменениями условий окружающей среды. В случае, когда корректировка механическим способом невозможна, разработчики обращаются к электронным методам уменьшения колебаний и неравномерной работы. Используется один общий подход, основанный на использовании замкнутого контура управления и выходного энкодера для работы в контуре позиционирования (рис.4). Такую систему можно усовершенствовать, настраивая чувствительность замкнутых контуров управления, чтобы уменьшить скорость и ускорение машины. При наличие чрезмерного, мертвого хода, использование такого входа для перемещении нагрузки, может привести к возникновению в системе колебаний вокруг фактического положения, что может привести к избыточному потреблению мощности, износу деталей, появлению вибраций и шума. Еще одной проблемой в подходе связанном с применение замкнутых контуров управления является то, что люфт сохраняется и будет задерживать правильное позиционирование в любое время, когда нагрузка остановится или изменит свое положение.


Рис. 4

Альтернативным решением может стать анализ системы для установления величины люфта и последующей коррекции путем введения поправки – добавления или вычитания небольшого количества движения к каждой управляющей команде поворота оси (рис.5). Во-первых, двигатель работает с небольшим приращением на малой скорости, а количество движения, необходимое для перемещения нагрузки, получается путем сравнения этого значения с непосредственно измеренным, для релевантности получаемых данных их сбор должен осуществляться контуром позиционирования двигателя. После такого тестирования система возвращается в рабочее положение, при котором контур позиционирования замкнут на энкодер.

Причины возникновения люфта

Популярные причины появления зазора:

  • Огромная нагрузка на подвеску. Чаще всего – из-за езды по дорогам плохого качества, использование шин, сделанных из резины низкого качества. Львиную часть нагрузки элементарно на себя вынуждена брать система рулевого управления.
  • Из-за изношенности «летят» наконечники тяги. Срок эксплуатации наконечников тяги может очень сильно разниться. Одно дело, если транспорт ездит сугубо по городским асфальтированным дорогам, и иное — по проселочным дорогам с грязью и бездорожью. Грязь способствует очень быстрому выходу из строя наконечников.
  • Ослабление гаек. Проблема теоретически быстро решаема, но то, что такая проблема есть на практике многие визуально даже не догадываются. Дело в том, что гайка “спрятана” за подушками безопасности.
  • Использование некачественного гидравлического масла.
  • Износ шлицов, шарниров.
  • Поломка подшипников ступицы, шаровой опоры.
Читать еще:  Что показывает степень сжатия двигателя

Возможные причины люфта и их диагностика

Выделяют следующие причины появления люфта:

  1. Из-за ослабевания гайки крепление руля стало более свободным.
  2. Ослабились регулировочные тяги, которые предназначены для регулировки схождения колёс автомобиля.
  3. Механизм, который соединяет рулевую систему и присоединяется к кузову, ослабляется, либо происходит просадка прокладок между конструкцией и кузовом.
  4. Наружные наконечники тяг сильно износились, увеличивая амортизацию средства передвижения.

При выключенном двигателе

С целью определения неисправности при выключенном двигателе, необходимо провести диагностику:

  1. Автомобиль следует разместить на ровной местности, чтобы колёса были направлены прямо.
  2. Поворачивая рулевое колесо постепенно в разные стороны, следует проверять все узлы данной системы. Для этого рекомендуется пригласить помощника. Вы почувствуете вибрацию в неисправных узлах во время движений рулём.

При движении

Во время движения необходимо прислушаться к работе деталей рулевого управления и оценить наличие посторонних вибраций. Наличие характерного звука свидетельствует о том, что узел неисправен. При этом стук усиливается во время езды по неровной дороге или во время преодоления препятствий, например, переезде через рельсы ж/д.

При торможении

Во время торможения авто не должно происходить никаких лишних движений. Если будет слышен посторонний звук, возможны неисправности с тормозными колодками. Также машина может не своевременно среагировать на нажатую педаль тормоза или тормозить рывками — всё дело в тормозных дисках.

Про люфт

Вводную информацию я вам дал, но вы мне скажете – «а какое отношение это имеет к люфту?» Самое прямое.

Смотрите сейчас турбины идут в основном двух типов:

  • Это так называемые — «втулочные», у которых нет подшипников качения, а вместо них идут втулки около холодной и горячей частью. Сейчас их на рынке большинство, я бы даже сказал 80 – 85% производителей используют именно такие агрегаты.

  • Так называемые – «подшипниковые». Как вы догадались у них вместо втулок идут подшипники. Причем используются не просто какие-то, а радиально — упорные подшипники качения (отдаленно напоминает «ступичные»).

Так вот, так как в основном идут втулочные типы, у них устройство элементарное, я бы сказал проверенное временем, но имеющее ряд недостатков.

  • Вал сажают на втулки, обычно они идут из мягких металлов, типа бронзы, в это место подается масло и вал вращается внутри это втулки. От нагревания и втулка и вал расширяются (вспоминаем горячую часть). ЕСЛИ СДЕЛАТЬ ВООБЩЕ БЕЗ ЗАЗОРОВ, то есть ЛЮФТА НЕ БУДЕТ, при расширении металлов вал просто заклинит и турбина вращаться не будет. Радиальный люфт – это нормальное явление, которое проходит после нагрева стенок.

  • Есть опорные подшипники (которые как бы закрывают вращающуюся часть внутри, не давай валу перемещаться по оси). Они также сделаны из бронзы. И они также имеют зазоры (чтобы не было «клина»), хотя намного меньше. Это так называемый — осевой люфт.

И как вы понимаете, даже новый «ТУРБОНАГНЕТАТЕЛЬ» будет иметь ход, зазоры (это абсолютно нормально), которые после запуска мотора (и его разогрева), практически уходят на нет, из-за теплового расширения и подачи масла (оно, кстати, образует как бы «масляный клин» на втулках и валу). НО из-за не герметичности конструкции, втулочная турбина, будет расходовать масло (хотя в современных агрегатах, это практически сведено к минимуму)

Подшипниковые турбины, работают более стабильно. Здесь опорная пластина и втулка на валу, заменены, одним только радиально – упорным подшипником. Который также имеет люфт, но он практически сведен к минимуму, к нескольким «соткам» (сотых миллиметра). Опять же через каналы к ним подается масло, но необходимости в «масляном клине» уже нет, поэтому можно подводить намного меньше. Поэтому расхода масла практически нет.

Читать еще:  Двигатель m104 mercedes характеристики

НО подшипниковые варианты, не такие надежные. Ранее сепараторы подшипника были сделаны из пластмассы, и они при высоких температурах просто плавились и разрушались. Такой подшипник быстро приходил в негодность, даже «клинил».

Далее появились подшипниковые агрегаты, которые были сделаны с бронзовой обоймой. Но тут опять присутствовал зазор, причем больший чем у втулочного собрата. Пришлось придумать специальную распорную пружину, которая уменьшала люфт, и распирала обойму. НО такие турбины получились слишком сложные и дорогие, и они редко применяются.

ну там три болта) по другому не закрутишь или коробку не наденешь,
блин вот ерунда то. а на холодную нет удара

кстате как многие говорят меняй опоры меняй опоры, если какой то опоре хана то такой нереальный удар о кузов

Polo Регистрация 21.09.2013 Адрес С-Пб Возраст 35 Сообщений 366

Спасибо:
Получено: 8
Отправлено: 13

Сложности при устранении рулевого люфта

Какие трудности могут ожидать водителя, если он решил самостоятельно выполнить подтяжку рулевого механизма?

Первая сложность – угол поворота. Усилие затяжки рейки напрямую влияет на возможность поворота передних колес, то есть снижает маневренность транспортного средства. Насколько туго будет вращаться руль, тоже определяется степенью затяжки рулевой рейки. Особенно ярко это наблюдается на машинах без гидроусилителя (иномарки начала 90-х и многие отечественные авто).

Если же машина снабжена гидроусилителем, именно на него ложится возрастающая нагрузка после затяжки рейки. Проявляется это в увеличении давления масла внутри системы. Как результат, высока вероятность протечки манжет или шлангов. Поэтому если для вращения руля нужно прилагать значительное усилие и в нейтральное положение он возвращается плохо, то гайку затяжки необходимо ослабить. Категорически не рекомендуется продолжать поездки с перетянутой рулевой рейкой. Иначе результатом будет значительный износ множества других смежных деталей.

Устранение люфта в рулевом управлении

Для регулировки рулевого управления понадобится обычный набор простых инструментов, позволяющих выполнить настройку креплений. Все работы по устранению неполадок проводятся в гараже со смотровой ямой, эстакадой, или с наличием подъемника.

Если люфтомер или ручная диагностика показали неудовлетворительные результаты, переходят к следующим действиям (потребуется помощь напарника):

  1. Определить источник стука и проверить работу подвесок.
  2. Попытаться подтянуть рулевую планку.
  3. Взявшись за руль, поворачивать его из стороны в сторону в пределах свободного хода, одновременно наблюдая работу карданного вала около рейки, шаровых наконечников тяги. А также отслеживать уплотненность сопряжения штанг, которые должны точно входить одна в другую.
  4. Если рулевая планка не повреждена, поворачивая регулировочный винт, устранить люфт в рейке.
  5. Свободный ход в карданном вале возникает чаще всего по причине отсутствия смазки. Устранить его можно, только заменив деталь.
  6. Люфт в месте сопряжения штанг устраняется точечной сваркой, которая сдерживает детали во время работы.
  7. Отремонтировать или заменить шаровые наконечники, если есть необходимость.
  8. Особое внимание уделить исправности наконечников и целостности резиновых пыльников.
  9. Проверить, устранен ли люфт рулевого колеса.

Если все действия не привели к желаемому результату, остается только полностью разобрать рулевой механизм, чтобы определить, какие детали вышли со строя и заменить их.

Безопасность водителя и пассажиров напрямую зависит от исправной работы рулевого механизма. Исправление поломок и регулировку механизмов лучше возложить на профессионалов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector