0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое двигатель стирлинга история

Двигатель Стирлинга

Двигатель внешнего сгорания Стирлинга — тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.

Хронологию событий, связанную с разработкой двигателей времен 18 века, вы можете наблюдать в интересной статье — «История изобретения паровых машин». А эта статья посвящена великому изобретателю Роберту Стирлингу и его детищу.

История создания.

Патент на изобретение двигателя Стирлинга как ни странно принадлежит шотландскому священнику Роберту Стирлингу. Его он получил 27 сентября 1816 года. Первые «двигатели горячего воздуха» стали известны миру ещё в конце XVII века, задолго до Стирлинга. Одним из важных достижений Стирлинга является добавление очистителя, прозванный им же самим «экономом».

В современной же научной литературе этот очиститель имеет совсем другое название — «рекуператор». Благодаря ему производительность двигателя растет, поскольку очиститель удерживает тепло в тёплой части двигателя, а рабочее тело в то же время охлаждается. Благодаря этому процессу эффективность системы значительно возрастает. Рекуператор представляет из себя камеру, заполненную проволокой, гранулами, гофрированной фольгой (гофры идут вдоль направления потока газа). Газ, проходит через наполнитель рекуператора в одну сторону, отдаёт (или приобретает) тепло, а при движении в другую сторону отбирает (отдаёт) его. Рекуператор может быть и внешним по отношению к цилиндрам и может быть размещён на поршне-вытеснителе в бета- и гамма-конфигурациях. Габариты и вес машины в этом случае меньше. В коей мере роль рекуператора выполняется зазором между вытеснителем и стенками цилиндра (если цилиндр длинный, то надобности в таком устройстве нет вообще, однако появляются значительные потери из-за вязкости газа). В альфа-стирлинге рекуператор может быть только внешним. Он монтируется последовательно с теплообменником, в котором со стороны холодного поршня, происходит нагрев рабочего тела.

В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году в мотор Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 % инвестировала фирма «Филипс». Поскольку двигатель Стирлинга имеет много преимуществ, то в эпоху паровых машин он был широко распространён.

Изобретённая в XVII веке французским физиком Папеном, она представляла собой цилиндр с поршнем, который поднимался под действием пара, а опускался под давлением атмосферы после сгущения отработавшего пара. На этом же принципе работала изобретённая в 1698 году паровая машина Севери для выкачивания воды из копей (не имевшая поршня) [4] . Несколько позже, в 1705 году, Томас Ньюкомен совместно со стекольщиком-лудильщиком Джоном Колли [en] , тоже из Дартмута, построили паровую пароатмосферную машину, отличавшуюся от машины Севери наличием цилиндра с поршнем, и тем, что сгущение (конденсация) пара производилось обливанием цилиндра снаружи водой. Значительно усовершенствовал такую машину Джеймс Уатт в 1769 году (золотники вместо ручного переключения, двойное действие, кривошип) [5] . Дальнейшее значительное усовершенствование парового двигателя (применение на рабочем ходу пара высокого давления вместо вакуума) было сделано американцем Оливером Эвансом в 1786 году и англичанином Ричардом Тревитиком в 1800 году. Удельная мощность таких машин возросла настолько, что позволила устанавливать такие двигатели на транспорте. Так появилась железная дорога [6] . Кроме применения в наземном транспорте, были попытки установить паровую машину на самолёт — проект Можайского).

Первая паровая машина в России была пущена в ход в 1766 году (проект крепостного Ивана Ползунова). Машина Ползунова имела два цилиндра с поршнями, работала непрерывно, и все действия в ней проходили автоматически. [7] . В 1769 году французом Николасом-Йозеф Кюньо была построена первая паровая телега, а в 1788 году Джон Фитч построил пароход [6] . Во всех машинах сгорание осуществлялось в топке, так что все они являлись двигателями внешнего сгорания. Однако, в настоящее время поршневые паровые машины
применяются весьма редко .

Двигатель Стирлинга: принцип работы и модификации

Принцип работы любого теплового мотора заключается в том, что для получения газа в расширенном состоянии нужны немалые механические усилия. В качестве наглядного примера можно привести опыт с двумя кастрюлями, согласно которому их наполняют холодной и горячей водой. Опускают в холодную воду бутылку с закрученной пробкой. После этого бутылку переносят в горячую воду.

При таком перемещении газ в бутылке совершает механическую работу и выталкивает пробку из горлышка. Первая модель двигателя внешнего сгорания работала по точно такому же принципу. Однако позже создатель осознал, что часть выделяемого тепла можно использовать для подогрева. Производительность агрегата от этого только возросла.

Чуть позже инженер из Швеции Эриксон усовершенствовал конструкцию, выдвинув идею об охлаждении и нагревании газа при постоянном давлении вместо объёма. Это позволило двигателю «продвинуться по карьерной лестнице» и начать использоваться в шахтах и типографиях. Для экипажей и транспортных средств агрегат оказался слишком тяжёлым.

Также советуем прочитать статью нашего специалиста, в которой он рассказывает о принципе работы и особенностях двигателя Ибадуллаева.

Дополнительно советуем внимательно изучить статью нашего автора, в которой подробно описывается роторно-поршневой двигатель Ванкеля.

На рисунке наглядно отображается рабочий цикл двигателя Стирлинга.

Как работает двигатель Стирлинга? Он преобразует тепловую энергию, подводимую извне, в полезную механическую работу. Этот процесс происходит за счёт изменения температуры газа или жидкости, циркулирующих в замкнутом объёме. В нижней части агрегата рабочее вещество нагревается, увеличивается в объёме и выталкивает поршень вверх.

Горячий воздух поступает в верхнюю часть мотора и охлаждается с помощью радиатора. Давление рабочего тела понижается, а поршень опускается для повторения всего цикла. Система полностью герметична, благодаря чему рабочее вещество не расходуется, а лишь перемещается внутри цикла.

Кроме того, существуют моторы с открытым циклом, в которых регулирование потоком реализуется с помощью клапанов. Эти модели называют двигателем Эриксона. В целом принцип работы двигателя внешнего сгорания схож с ДВС. При низких температурах в нём происходит сжатие и наоборот. Нагрев же осуществляется по-разному.

Тепло в двигателе внешнего сгорания подводится через стенку цилиндра извне. Стирлинг догадался применять периодическое изменение температуры с вытеснительным поршнем. Этот поршень перемещает газы с одной полости цилиндра в другую. При этом с одной стороны постоянно поддерживаются низкие температуры, а с другой — высокие. При перемещении поршня вверх газ перемещается из горячей в холодную полость.

Система вытеснителя в двигателе соединена с рабочим поршнем, который сжимает газ в холоде и позволяет расширяться в тепле. Полезная работа совершается как раз благодаря сжатию в более низких температурах. Непрерывность обеспечивается кривошипно-шатунным механизмом. Особых границ между стадиями цикла не наблюдается. Благодаря этому КПД двигателя Стирлинга не уменьшается.

Некоторые детали работы двигателя

В теории подводить энергию в двигатель внешнего сгорания может любой источник тепла (солнце, электричество, топливо). Принцип работы тела двигателя заключается в использовании гелия, водорода или воздуха. Термическим максимально возможным КПД обладает идеальный цикл. КПД при этом составляет от 30 до 40 %. Эффективный регенератор может обеспечить более высокий КПД. Встроенные теплообменники обеспечивают регенерацию, обмен и охлаждение в современных двигателях. Их преимуществом является работа без масел. В целом смазки двигателю необходимо немного. Среднее давление в цилиндре варьируется от 10 до 20 МПа. Необходима хорошая уплотнительная система и возможность попадания масла в рабочие полости.

Читать еще:  Что такое перманентный двигатель

Согласно теоретическим расчётам эффективность двигателя Стирлинга сильно зависима от температуры и может достигать даже 70 %. Самые первые реализованные в металле образцы двигателя обладали низким КПД, поскольку варианты теплоносителя были неэффективны и ограничивали максимальную температуру нагрева, отсутствовали конструкционные материалы, устойчивые к высокому давлению. Во второй половине XX века двигатель с ромбическим приводом во время испытаний превысил показатель 35 % КПД на водном теплоносителе и с температурой 55 градусов по Цельсию. Совершенствование конструкции в некоторых экспериментальных образцах позволило достичь практически 39 % КПД. Почти все современные бензиновые двигатели, имеющие аналогичную мощность, обладают КПД 28 — 30 %. Турбированные дизели достигают около 35 %. Самые современные образцы двигателей Стирлинга, разработанные компанией Mechanical Technology Inc в США, показывают эффективность до 43 %.

Существует несколько модификаций двигателя внешнего сгорания Стирлинга.

Модификация «Альфа»

Такой двигатель состоит из горячего и холодного раздельных силовых поршней, находящихся в собственных цилиндрах. К цилиндру с горячим поршнем поступает тепло, а холодный располагается в охлаждающем теплообменнике.

Модификация «Бета»

В этом варианте двигателя цилиндр, в котором расположился поршень, с одной стороны нагревается, а другой охлаждается. Внутри цилиндра двигаются вытеснитель и силовой поршень. Вытеснитель предназначен для изменения объёма рабочего газа. Регенератор же выполняет возвращение остывшего рабочего вещества в нагретую полость двигателя.

Модификация «Гамма»

Вся нехитрая конструкция модификации «Гамма» выполнена из двух цилиндров. Первый из них полностью холодный. В нём совершает движение силовой поршень. А второй — холодный только с одной стороны, а с другой — нагретый. Он служит для перемещения механизма вытеснителя. Регенератор циркуляции холодного газа в этой модификации может быть общим для обоих цилиндров и быть включённым в конструкцию вытеснителя.

Как построить эффективный тепловой насос Стирлинга?

Двигатели или тепловые насосы Стирлинга — это системы, которые могут работать при невероятно малой разности температур. Некоторым вариантам двигателей Стирлинга для работы достаточно даже тепла человеческого тела. В статье мы рассматриваем динамику этой интересной машины, которую можно построить в домашних условиях, и показываем, как создать её модель в COMSOL Multiphysics.

Современные применения старой идеи

Сначала немного истории двигателя Стирлинга. Разработанный два века назад в 1816 году Робертом Стирлингом двигатель в то время называли «двигателем будущего». Хотя эта технология так и не стала действительно популярной, двигатели Стирлинга широко используются во многих современных прикладных задачах. Например, солнечный вариант двигателя Стирлинга непосредственно преобразует солнечное тепло в механическую энергию, которая в свою очередь приводит в движение генератор и производит электричество. Кроме того, этот же подход используется для получения энергии из геотермальных источников и тепловых сбросов промышленных предприятий. Вероятно, самая удивительная область, в которой нашли свое применение двигатели Стирлинга — это шведские подводные лодки; в них двигатели Стирлинга обеспечивают тягу даже без доступа к воздуху.

От тепловой энергии к механической работе

Мы рассказали о некоторых применениях двигателей Стирлинга, но каков же принцип работы этого устройства? В двигателе Стирлинга тепловая энергия преобразуется в механическую работу в ходе циклического процесса. Детали реализации могут отличаться, но основной принцип остается неизменным. Рабочее тело проходит через четыре процесса: охлаждение, сжатие, нагрев и расширение. Теплота переносится газом от горячей стороны двигателя к холодной. КПД двигателя не превосходит КПД цикла Карно.

В отличие от обычных двигателей, двигатели Стирлинга не требуют для своей работы высоких температур. Некоторые двигатели успешно работают при небольшой разности температур между горячей и холодной сторонами. Кроме того, для них характерен очень низкий уровень шума и соответствующих потерь энергии, поскольку в рабочем процессе не происходят взрывы и не выделяются выхлопные газы. В то же время двигатели Стирлинга лучше всего подходят для прикладных задач, в которых требуется обеспечить постоянную мощность, поскольку динамически регулировать их мощность чрезвычайно сложно. Это, вероятно, самая главная причина, по которой мы до сих пор не управляем автомобилями с двигателями Стирлинга.


Двигатель Стирлинга, работающий от тепла человеческой ладони. (Изображение «Двигатель Стирлинга, который работает только от разности температур между окружающим воздухом и ладонью». Собственная работа участника Arsdell. Доступно по лицензии Creative Commons «Атрибуция — На тех же условиях» 3.0 на Викискладе).

Как построить свой собственный двигатель Стирлинга

Если у вас есть опыт ручной работы, вы можете сами собрать двигатель Стирлинга в домашних условиях даже без профессиональных инструментов и соответствующего опыта. На YouTube вы можете найти несколько видеоуроков и пошаговых руководств по сборке двигателя. Самый простой вариант можно собрать из банки из-под колы и других ненужных в хозяйстве вещей.

Конечно, КПД такого двигателя Стирлинга вряд ли будет оптимальным. Более подходящим решением является создание численной модели двигателя.

Моделирование теплового насоса Стирлинга в COMSOL Multiphysics

С помощью численной модели двигателя Стирлинга мы можем подобрать и испытать различные сочетания материалов и настройки параметров. Процесс описывается уравнениями теплопередачи и гидродинамики, а для упрощенного описания механической составляющей процесса достаточно решить дополнительное обыкновенное дифференциальное уравнение — уравнение движения.

Двухмерная осесимметричная модель состоит из основного цилиндра, который содержит рабочее тело (воздух) и поршень. В малом цилиндре вверху расположен приводной поршень. Оба поршня соединены параллельно и двигаются на коленчатом валу, на котором они разнесены по фазе на 90°. Коленчатый вал в модель не включен. Такой вид двигателя Стирлинга называется гамма-конфигурацией.


Модель теплового насоса Стирлинга.

Здесь задача теплопередачи в рабочем газе уже решена. Механическая сторона процесса реализуется с помощью подвижной сетки (ALE). Вытеснитель и приводной поршень могут свободно двигаться в направлении z. Установленное смещение соответствует режиму теплового насоса. При этом механическая работа используется для передачи тепловой энергии в направлении, противоположном направлению самопроизвольной передачи теплоты. Обратный процесс — собственно работу двигателя Стирлинга — можно моделировать, используя источник тепла и рассчитывая конечные силы давления на приводной поршень и вытеснитель. В любом случае, система проходит цепочку процессов, которые соответствуют четырем стадиям цикла Карно:


Термодинамические процессы, действующие на рабочее тело.

КПД такого цикла далек от цикла Карно, но полученный график зависимости давления от объема, который вы видите ниже, совпадает с экспериментальными данными.


График зависимости давления от объема в цикле Стирлинга.

Основное преимущество модели заключается в том, что мы можем изучать физические явления в тепловом насосе. Например, представленное ниже анимированное изображение показывает распределение скоростей во время работы теплового насоса.

Распределение скоростей во время работы теплового насоса.

Поршень передает механическую энергию, требуемую для перекачки тепла, а значит, мы можем изучить динамическое распределение температуры во время работы теплового насоса.

Читать еще:  Что такое маслоприемник в двигателе

Анимация, показывающая распределение температуры.

Увеличение КПД

Чтобы увеличить КПД двигателя Стирлинга, необходимо максимизировать площадь замкнутой области на графике «давление-объем» (pV-диаграмме). Эта площадь соответствует работе, совершенной двигателем. Общий КПД двигателя можно увеличить несколькими способами. Выбор в качестве рабочего тела газа с высокой удельной газовой постоянной (например, с малой молярной массой) максимизирует работу, которую может произвести двигатель в процессе изотермического расширения. Поэтому в качестве рабочего газа обычно используют водород или гелий. Кроме этого, можно максимизировать передачу тепла через вытеснитель, используя пористый вытеснитель-регенератор (см. эту статью).

Рубрики блога

Я соглашаюсь с тем, что COMSOL будет собирать, хранить и обрабатывать мои персональные данные согласно моим настройкам и Политике конфиденциальности COMSOL . Я соглашаюсь получать электронные письма от COMSOL AB и его аффилированных компаний о блоге COMSOL. Это согласие может быть отозвано.

Преимущества и недостатки

Современный уровень проектирования и технологии изготовления позволяют повысить коэффициент полезного действия «Стирлинга» до 70 процентов.

  • Что удивительно, крутящий момент двигателя практически не зависит от скорости вращения коленчатого вала;
  • Силовая установка не содержит системы зажигания, клапанной системы и распредвала.
  • На протяжении всего срока эксплуатации не нужны регулировки и настройки.
  • Двигатель не «глохнет», а простота конструкции позволяет эксплуатировать его в автономном режиме продолжительное время;
  • Можно использовать любые источники тепловой энергии, от дров до уранового топлива.
  • Сжигание топлива происходит вне двигателя, что способствует его полному дожиганию и минимизации выбросов токсичных веществ.
  • Так как топливо сгорает вне двигателя, то отвод тепла идёт через стенки радиатора, а это дополнительные габариты;
  • Материалоемкость. Чтобы сделать Стирлинг-машину компактной и мощной требуются дорогие жаропрочные стали, способные выдерживать высокое рабочее давление и имеющие низкую теплопроводность;
  • Нужна специальная смазка, обычная для «Стирлингов» не подходит, так как коксуется при высоких температурах;
  • Чтобы получить высокую удельную мощность, рабочее тело в «Стирлингах» применяют водород и гелий.

Водород отличается взрывоопасностью, а при высоких температурах может растворяться в металлах, образуя при этом металлогидриты. Иными словами, происходит разрушение цилиндров двигателя.

А ещё водород и гелий обладают высокой проникающей способностью и легко просачиваются через уплотнения, понижая рабочее давление.

Если вы, познакомившись с нашей статьёй, захотите приобрести устройство — двигатель внешнего сгорания, не бегите в ближайший магазин, такая штука не продаётся, увы…

Сами понимаете, те, кто занимается усовершенствованием и внедрением этой машины, держат свои разработки в секрете и продают их только солидным покупателям.

Но если вы поделитесь ссылкой на статью в социальных сетях, то возможно ваш комментарий прочитают заинтересованные люди и вы сможете пообщаться с единомышленниками на эту тему.

И не забудьте подписаться на наш блог – уверен, вас ждёт много интересного.

Смотрите это видео и делайте своими руками.

Что такое двигатель стирлинга история

Сам двигатель был изобретен пастором Стирлингом в 1816 году, а в 1817 году им был получен патент на изобретение. Это была тяжелая машина весом больше тонны имеющей мощность чуть более одной лошадиной силы (менее одного Квт), а её механический КПД (коэффициент полезного действия) был по разным оценкам не выше 3%. Она была открытого типа (т.е. не герметичная) и не имела регенератора. Основным достоинством было то, что её можно было изготовить в любой сельской кузнице, а так же то, что давление в ней было атмосферное.

Примечателен ещё один факт – цикл Карно, описывающий тепловые процессы газов, был открыт в 1825 году, т.е. спустя 9 лет после изобретения Стирлинга.

Это говорит об гениальности изобретателя, который на своих наблюдениях над процессами расширения и сжимания газов (воздуха) чисто интуитивно сконструировал свою машину. Впоследствии Стирлинг ввел в машину закрытый цикл (машина стала герметичной), а так же регенератор – устройство, которое накапливало и отдавало тепловую энергию в разных циклах работы машины. До конца 20-го века были изготовлены порядка 1 тысячи машин, которые были поставлены в основном в колонии (США) и некоторые из которых работают и по сей день. Их вес стал меньше, а КПД поднялось до 10%. Но машина Стирлинга была вытеснена с рынка вначале паровой машиной, затем паровой турбиной, и двигателями внутреннего сгорания, двигателем Дизеля. Новые машины за счет повышенного давления в рабочей полости (в цилиндрах и камерах) имели лучше показатель «вес/габарит/мощность».

Как работает классическая машина Стирлинга?

В ИНТЕРНЕТе есть много информации по типам и принципу действия машины Стирлинга. Если коротко описать принцип действия, то можно сказать, что в течении 4-х циклов происходит расширение и сжатие газа в цилиндрах (их количество варьирует от одного до десятка), с нагреванием одних из них и отводом тепла от другогих. Регенератор при этом служит для аккумулирования тепловой энергии газообразного тела, вытекающего из горячей полости, и возвращения аккумулированной энергии газообразному телу при обратном движении – от холодной полости. От того, насколько хорошо работает регенератор, зависит общий КПД машины.

Преимущества машины Стирлинга:

— этот двигатель называют «двигатель внешнего сгорания» так как для его запуска необходима внешняя тепловая энергия, т.е. двигатель «всеяден»,

— в двигателе нет ни одного клапана,

— все процессы, протекающие в двигатели происходят без взрывов и резких изменениях давления, т.е. двигатель малошумящий,

— количество механических деталей, как правило, меньше в 1,5-2 раза по сравнению с двигателями внутреннего сгорания и двигателями Дизеля,

— КПД сложных машин Стирлинга выше двигателя внутреннего сгорания (макс. 25%) и двигателя Дизеля (до 32%) и составляет у самых лучших образцов (32-34)%.

Недостатки машины Стирлинга:

— для получения приемлимых массогабаритных параметров необходимы давления до 200атм. и применение высоко текучего гелия или взрывоопасного водорода,

— использования уплотнений, работающих без смазки,

— сложная конструкция теплообменников в горячей и холодной полости,

— сложная конструкция регенератора,

— высокоэффективная система охлаждения,

— отсутствие чёткой математической модели, описывающей все процессы, протекающие в той или иной части машины.

Какие существуют типы машин?

Классификация машин Стирлинга по типу, применяемому рабочему телу, конструкции и прочее очень сложная. Подробная информация содержится в ИНТРНЕТе. Исходя из сложности, значения КПД, применяемого рабочего тела и стоимости, мы для себя классифицировали машины на три основных типа:

ПЕРВЫЙ – сложный, с применением в качестве рабочего тела гелия или водорода, с рабочим давлением больше 200 атм., имеющие в составе регенератор. Их механический КПД выше 30%, зато стоимость и сложность изготовления высокая.

ВТОРОЙ – средний. В качестве рабочего тела используется воздух и/или азот, рабочее давление до 10атм., имеющие в своем составе регенератор. Их КПД редко достигает 20%, зато стоимость и сложность средняя,

ТРЕТИЙ – простой. В их конструкции отсутствует регенератор, давление 1 атм., и соответственно КПД — менее 4%. Большой габарит при малой мощности, зато цена низкая. Используется как модели, но применения в промышленности не нашли.

Ход работ

Для изучения вопроса вначале нами были изготовлены 2 машина Стирлинга ПЕРВОГО типа, т.е. без регенератора, с рабочим давлением 1 атм. и воздухом в качестве рабочего тела. Были изготовлены 2 макета машин конструкции «ГАММА» и «БЕТА». На них отработаны методы замера механической мощности и КПД.

Читать еще:  Scania двигатель сколько весит

На сегодня проводится отработка узлов «регенератор», «теплообменник», «уплотнения». Эти работы проводятся над отдельными узлами. Целью этих исследовательских работ является получения рабочих узлов с их последующим применением в машинах ВТОРОГО типа.

Наш выбор.

Исходя из наших возможностей, возможностей технологического парка станков, квалификации и опыта специалистов в Республике Молдова, нами был выбран ВТОРОЙ тип машины, т.е. работающие при рабочем давлении не больше 10-ти атм., с регенератором и воздухом или азотом в качестве рабочего тела. В основном выбор основывается на создании безопасной и простой машины, с высоким ресурсом работы и малой стоимостью. Пользователь не должен обладать квалификацией или специальными знаниями при её эксплуатации, а неполадки не должны приводить к взрывам или иным опасным ситуациям.

ПОЧЕМУ МАШИНЫ ВТОРОГО ТИПА?

Простой расчёт показывает, что для использования машины Стирлинга в сельской местности высокий КПД не нужен. И вот почему… Допустим, КПД машины равен 15%. О чём это говорит? Это означает, что 15% будут преобразованы в механическую (т.е. электрическую) энергию, а остальные 85% будут выведены их машины Стирлинга в качестве тепла, ведь для охлаждения машины нужен эффективный охладитель. Допустим, что машина вырабатывает 1.5 кВт* механической / электрической энергии, тогда система охлаждения машины выведет во внешний контур 8.5 кВт тепловой энергии с температурой (70-90)°С. Это соотношение так же хорошо при КПД машины 10% — на 1кВт* электричества будет вырабатываться 9кВт тепла.

Примеры применения машины Стирлинга

В Республике Молдова выращиваются от 0.5 до 1.0 млн. тонн пшеницы. Примерно столько же остаётся соломы.

Энергетическая ценность соломы составляет примерно (0,6-0,7) от угля среднего качества (не путать вес и объем), что по энергетической ценности эквивалентно как минимум 300 тысяч тонн угля в самый плохой год. Для отопления среднее хозяйство в сельской местности потребляет порядка (1,0-1,2) тонн угла среднего качества, а количество хозяйств в сельской местности примерно равно 300 тысяч, т.е. для их полного обеспечения необходимо от 300 до 360 тысяч тонн угля среднего качества.

Вывод

Если всю солому,которая остается на полях, использовать для отопления и выработки электроэнергии, то даже её практически хватит для этих целей. Так же можно применять отходы кукурузы, подсолнечника, а так же энергию Солнца. А для этого нужен «двигатель внешнего сгорания», коим и является машина Стирлинга.

* без учёта КПД преобразования механическая энергия / электрическая энергия.

Двигатель для судов

В ДС примерно 50% теплоты, участвующей в цикле, отводится через холодильник (у дизеля 20%), причем для достижения высокого термического КПД двигателя тепло должно отводиться при пониженной температуре (как правило, 60 °С). В обычных условиях это требует применения более мощной системы охлаждения с радиатором, имеющим в 2,5—3 раза большую поверхность, чем у дизеля.

Это существенное затруднение полностью отпадает при использовании ДС на водном транспорте, где охлаждающая среда — забортная вода — в неограниченном количестве. Сравнительно низкая ее температура (4—15° для средних широт) увеличивает разницу температур нагревателя и холодильника, следовательно, при этом КПД двигателя выше. Например, низкооборотные судовые дизели нового поколения мощностью порядка 1000—9000 кВт имеют эффективный КПД до 50%.

Значительно повысить экономичность эксплуатации судов позволит использование ДС, в котором будет сжигаться каменный уголь. Решающим доводом за такое решение является то, что стоимость угля в 6—10 раз ниже стоимости дизельного топлива. Одновременно, благодаря особенностям нового двигателя, повысится надежность силовой установки и готовность судна к эксплуатации, уменьшится объем работ по его техническому обслуживанию. Канадские ученые должным образом оценили эти преимущества и ведут исследования по переделке обычных судовых дизелей мощностью до 1700 кВт в двигатели Стирлинга, работающие на угле. Порошкообразный уголь предполагается подавать в камеру сгорания ДС при помощи форсунок и сжигать в распыленном состоянии

В последнее время к двигателю Стирлинга проявляют интерес даже некоторые фирмы, специализирующиеся на производстве судовых дизелей. Например, японская фирма «Мицубиси» недавно провела успешное испытание судового ДС мощностью 66 кВт. В период с 1980 по 1983 гг. в Шанхайском НИИ судовых дизелей был разработан двухцилиндровый ДС мощностью 7,5 кВт.

Большой интерес представляет возможность использования для судовых ДС тепловых аккумуляторов вместо топлива. Запас тепловой энергии в расплавах некоторых солей, например, фтористого лития, составляет примерно 0,5 кВт ч/л (500 кВт ч/м 3 ) Таким образом, энергоемкость тепловых аккумуляторов соизмерима с калорийностью обычных топлив и вполне достаточна для многих судов, совершающих не слишком длительные рейсы. В Николаевском кораблестроительном институте разработан проект судовой энергетической установки мощностью 100 кВт с тепловым аккумулятором, материалом для которого служит обыкновенный графит.

Зарядку тепловых аккумуляторов для судов можно производить при помощи сжигания угля, используя излишки электроэнергии в ночное время, а также от расположенных в портах высокотемпературных ядерных реакторов.

Двигатель Стирлинга весьма эффективен для установки на небольшие суда. Так фирма «Юнайтед Стирлинг» установила одноцилиндровый ДС мощностью 10 л. с. на серийно выпускаемом катере типа «Альбин» длиной 10 м, обеспечив скорость катера 7 уз. Двигатель был установлен в корме и снабжен реверс-редуктором. Уровень шума, который был измерен на расстоянии 1 м от двигателя, работающего на полной нагрузке без какого-либо глушителя, составлял всего 68 дБ, что на 20 дБ меньше, чем у ДВС.

Аналогичные испытания проведены на катере «Стирлинг Силенса» датской постройки. Катер развил скорость 13 уз, работа двигателя оказалась надежной, вибрации не ощущались. Можно полагать, что при серийном выпуске ДС вытеснят ДВС на малых судах.

Одно из специфических качеств двигателя Стирлинга — способность работать с тепловым аккумулятором без атмосферного воздуха может быть успешно реализовано на подводных аппаратах. Полное отсутствие загрязнения водной среды, возможность многократного и быстрого разогрева материала теплоаккумулятора на судне обеспечения позволяют эффективно использовать такой аппарат при любых видах подводных исследований и работ.

Энергозапас силовой установки с ДС и тепловым аккумулятором (с расплавом фтористого лития) в 8—10 раз больше, чем у обычной системы со свинцовокислотными аккумуляторами и электродвигателем постоянного тока.

Двигатель Стирлинга, в отличие от электро двигателя, даже при самом высоком КПД выделяет в окружающую среду много тепла. Поэтому подводный буксировщик с ДС легко приспособить для одновременного обогрева водолаза.

Согласно полученным автором экспериментальным данным, стандартного пятилитрового баллона с пропаном хватает для непрерывной работы самодельного ДС мощностью 0,1 кВт в течение 40 часов. Такой лодочный мотор удобен и надежен в эксплуатации, исключает загрязнение водоемов.

Итак, есть все технико-экономические предпосылки для того, чтобы двигатели Стирлинга мощностью до 1 кВт нашли применение на подводных буксировщиках и в качестве массового лодочного мотора. Дело в том, что при серийном производстве стоимость таких двигателей упрощенной конструкции, по моим предварительным расчетам, уже в настоящее время не может превышать стоимости обычных подвесных лодочных моторов с ДВС.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector