2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое дифференциальная защита двигателя

Продольная дифференциальная защита

Принцип действия

Принцип действия продольной дифференциальной защиты основан на сравнении токов, протекающих через участки между защищаемым участком линии (или защищаемом аппаратом). Для измерения значения силы тока на концах защищаемого участка используются трансформаторы тока(TA1, TA2). Вторичные цепи этих трансформаторов соединяются с токовым реле(KA) таким образом, чтобы на обмотку реле попадала разница токов от первого и второго трансформаторов.

В нормальном режиме (1) значения величины силы тока вычитаются друг из друга, и в идеальном случае ток в цепи обмотки токового реле будет равен нулю. В случае возникновения короткого замыкания (2) на защищаемом участке, на обмотку токового реле поступит уже не разность, а сумма токов, что заставит реле замкнуть свои контакты, выдав команду на отключение поврежденного участка.

В реальном случае через обмотку токового реле всегда будет протекать ток отличный от нуля, называемый током небаланса. Наличие тока небаланса объясняется рядом факторов:

  • Трансформаторы тока имеют недостаточно идентичные друг другу характеристики. Чтобы снизить влияние этого фактора, трансформаторы тока, предназначенные для дифференциальной защиты, изготавливают и поставляют попарно, подгоняя их друг к другу еще на стадии производства. Кроме того, при использовании дифференциальной защиты, например, трансформатора, у измерительных трансформаторов тока изменяют число витков, в соответствии с коэффициентом трансформации защищаемого трансформатора.
  • Некоторое влияние на возникновение тока небаланса может оказывать намагничивающий ток, возникающий в обмотках защищаемого трансформатора. В нормальном режиме этот ток может достигать 5 % от номинального. При некоторых переходных процессах, например при включении трансформатора с холостого хода под нагрузку, ток намагничивания на короткое время может в несколько раз превышать номинальный ток. Для того, чтобы учесть влияние намагничивающего тока, ток срабатывания реле принимают большим, чем максимальное значение намагничивающего тока.
  • Неодинаковое соединение обмоток первичной и вторичной стороны защищаемого трансформатора (например, при соединении обмоток Y/Δ) так же влияет на возникновение тока небаланса. В данном случае во вторичной цепи защищаемого трансформатора вектор тока будет смещён относительно тока в первичной цепи на 30°. Подобрать такое число витков у трансформаторов тока, которое позволило бы компенсировать эту разницу, невозможно. В этом случае угловой сдвиг компенсируют с помощью соединения обмоток: на стороне звезды обмотки трансформаторов тока соединяют треугольником, а на стороне треугольника соответственно звездой.

Следует отметить, что современные микропроцессорные устройства защиты способны учитывать эту разницу самостоятельно, и при их использовании, как правило, вторичные обмотки измерительных трансформаторов тока соединяют звездой на обоих концах защищаемого участка, указав это в настройках устройства защиты.

Область применения

Дифференциальная защита устанавливается в качестве основной для защиты трансформаторов и автотрансформаторов. Одним из недостатков такой защиты является сложность её исполнения: в частности, требуется наличие надёжной, помехозащищённой линии связи между двумя участками, на которых установлены трансформаторы тока. В связи с этим, дифференциальную защиту применяют для защиты одиночно работающих трансформаторов и автотрансформаторов мощностью 6300 кВА и выше, параллельно работающих трансформаторов и автотрансформаторов мощностью 4000 кВА и выше и на трансформаторах мощностью 1000 кВА и выше, если токовая отсечка не позволяет добиться необходимой чувствительности при коротком замыкании на выводах высокого напряжения, а максимальная токовая защита имеет выдержку времени более, чем 0,5 с.

<> == Поперечная дифференциальная защита ==

Принцип действия

Принцип действия поперечной дифференциальной защиты так же заключается в сравнении значений токов, но в отличие от продольной, трансформаторы тока устанавливаются не на разных концах защищаемого участка, а на разных линиях, отходящих от одного источника (например, на параллельных кабелях, отходящих от одного выключателя). Если произошло внешнее короткое замыкание, то данная защита его не почувствует, так как разность значений силы тока, измеряемых на этих линиях, будет практически равна нулю. В случае же короткого замыкания непосредственно на одном из защищаемых кабелей разница токов не будет равняться нулю, что даст основание для срабатывания защиты.

Область применения

Данная защита устанавливается только как дополнительная, что связано с серьёзным её недостатком: в случае выведения из эксплуатации одной из линий, защита перестаёт быть селективной, поэтому её приходится отключать. Однако, этот вид защиты довольно прост в исполнении, а также позволяет производить селективное отключение в тех сетях, где нет возможности установить токовую отсечку. Поперечную защиту применяют для защиты кабельных линий, генераторов

КОМПЛЕКСНАЯ МОДЕЛЬ ДЛЯ ИССЛЕДОВАНИЯ ФУНКЦИОНИРОВАНИЯ ЦИФРОВОЙ ДИФФЕРЕНЦИАЛЬНОЙ ЗАЩИТЫ СИЛОВОГО ТРАНСФОРМАТОРА

  • Аннотация
  • Об авторе
  • Список литературы
  • Cited By

Аннотация

В статье представлена комплексная модель для исследования цифровой дифференциальной защиты двухобмоточного силового трансформатора. Модель разработана в среде динамического моделирования MatLab-Simulink с использованием пакета расширения SimPowerSystems и включает в себя следующие элементы: источник питания, трехфазный силовой трансформатор, трехфазные группы трансформаторов тока и модель цифровой дифференциальной защиты трансформатора. Каждый элемент модели описан в степени, достаточной для понимания его реализации в среде динамического моделирования. Особое внимание уделено описанию принципов обработки, цифровой фильтрации и способам формирования рабочего и тормозного токов основного элемента комплексной модели – цифровой дифференциальной защиты трансформатора. Методом вычислительного эксперимента с использованием разработанной модели исследовано функционирование цифровой дифференциальной защиты трансформатора при внешних и внутренних (по отношению к защищаемому трансформатору) повреждениях: внутреннее короткое замыкание, внешние короткие замыкания без насыщения и с насыщением трансформаторов тока со стороны низшего напряжения. Для каждого рассмотренного случая приведены осциллограммы рабочего и тормозного токов исследуемой цифровой защиты. Особое внимание уделено анализу функционирования цифровой дифференциальной защиты трансформатора при анормальных режимах работы силового трансформатора: перевозбуждении и возникновении броска тока намагничивания. Приведены осциллограммы протекающих в данных режимах токов и их гармонический состав. Проанализированы причины возникновения данных режимов. Рассмотрены алгоритмы блокирования работы цифровой дифференциальной защиты трансформатора в анормальных режимах, основанные на гармоническом анализе протекающих токов. Показаны недостатки данных алгоритмов и отмечена необходимость их технического совершенствования.

Читать еще:  Что такое верхнеклапанный двигатель и нижнеклапанный

Ключевые слова

Об авторе

Адрес для переписки: Румянцев Юрий В. — Белорусский национальный технический университет просп. Независимости, 65/2, 220013, г. Минск, Республика Беларусь Тел.: +375 17 292-65-52 y.rumiantsev@gmail.com

Список литературы

1. Sim Power Systems. User’s Guide. Version 5 [Electronic Resource] // MathWorks, 2011. Mode of Access: http://www.mathworks.com/help/releases/R2011a/pdf_doc/physmod/powersys/powersys.pdf. Date of Access: 01. 12. 2015.

2. Румянцев, Ю. В. Исследование надежности срабатывания цифровой дифференциальной защиты трансформатора в системе динамического моделирования MatLab-Simulink / Ю. В. Румянцев // Методические вопросы исследования надежности больших систем энергетики. Минск, 2015. Вып. 66: Актуальные проблемы надежности систем энергетики. С. 390–396.

3. Новаш, И. В. Расчет параметров модели трехфазного трансформатора из библиотеки MatLab-Simulink с учетом насыщения магнитопровода / И. В. Новаш, Ю. В. Румянцев // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2015. № 1. С. 12–24.

4. Королев, Е. П. Расчеты допустимых нагрузок в токовых цепях релейной защиты / Е. П. Королев, Э. М. Либерзон. М.: Энергия, 1980. 207 с.

5. Романюк, Ф. А. Информационное обеспечение вычислительного эксперимента в релейной защите и автоматике энергосистем / Ф. А. Романюк, В. И. Новаш. Минск: ВУЗ-ЮНИТИ, 1998. 174 с.

6. Новаш, И. В. Упрощенная модель трехфазной группы трансформаторов тока в системе динамического оделирования / И. В. Новаш, Ю. В. Румянцев // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2015. № 5. С. 23–38.

7. Wye-Connected Current Transformers Simplified Model Validation in MatLab-Simulink / F. Romanyuk [et al.] // Przegląd Electrotechniczny. 2015. Vol. 91, № 11. P. 292–295.

8. Ziegler, G. Numerical Differential Protection: Principles and Applications / G. Ziegler. 2 edition. Erlangen, Germany: Publicis Publishing, 2012. 287 р.

9. IEEE Guide for Protecting Power Transformers: IEEE Standard. C 37.91-2008.

10. Benmouyal, G. Removal of DC-Offset in Current Waveforms Using Digital Mimic Filtering / G. Benmouyal // IEEE Transactions on Power Delivery. 1995. Vol. 10, No 2. P. 621–630.

11. Перспективные технологии реализации микропроцессорных защит линий распредели-

12. тельных сетей / Ф. А. Романюк [и др.] // Перспективные материалы и технологии: в 2 т. / под ред. В. В. Клубовича. Витебск: ВГТУ, 2015. T. 1. С. 115–139.

13. Paithankar, Y. G. Fundamentals of Power System Protection / Y. G. Paithankar, S. R. Bhide. New Delhi: Prentice-Hall of lndia Private Limited, 2003. 287 p.

14. Madzikanda, E. A Practical Look at Harmonics in Power Transformer Differential Protection / E. Madzikanda, M. Negnevitsky // 2012 IEEE International Conference on Power System Technology. POWERCON 2012. Auckland, New Zealand. Article number 6401274.

15. Романюк, Ф. А. Исследование алгоритма блокировки токовых защит трансформатора в режимах броска тока намагничивания / Ф. А. Романюк, М. С. Ломан, А. С. Гвоздицкий // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2014. № 2. С. 5–10.

16. Kulidjian, A. New Magnetizing Inrush Restraining Algorithm for Power Transformer Protection / A. Kulidjian, B. Kasztenny, B. Campbell // IEEE Developments in Power Sys. Protec. Conf. 2001. P. 181–184.

17. Guzman, A. Power Transformer Protection Improvements with Numerical Relays / A. Guzman, H. Altuve, D. Tziouvaras // CIGRE Study Committee B5 – Protection and Automation. 2005. Vol. 11.

Для цитирования:

Румянцев Ю.В. КОМПЛЕКСНАЯ МОДЕЛЬ ДЛЯ ИССЛЕДОВАНИЯ ФУНКЦИОНИРОВАНИЯ ЦИФРОВОЙ ДИФФЕРЕНЦИАЛЬНОЙ ЗАЩИТЫ СИЛОВОГО ТРАНСФОРМАТОРА. Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2016;59(3):203-224. https://doi.org/10.21122/1029-7448-2016-59-3-203-224

For citation:

Rumiantsev Yu.V. A COMPREHENSIVE MODEL FOR THE POWER TRANSFORMER DIGITAL DIFFERENTIAL PROTECTION FUNCTIONING RESEARCH. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2016;59(3):203-224. (In Russ.) https://doi.org/10.21122/1029-7448-2016-59-3-203-224


Контент доступен под лицензией Creative Commons Attribution 4.0 License.

Выполнение чувствительной защиты к межвитковым замыканиям представляет собой сложную задачу, так как изменение тока очень мало и его значение может оказаться недостаточным для срабатывания максимальной токовой защиты, токовой отсечки и дифференциальной токовой защиты на ранней стадии развития аварийного процесса.

Обеспечение нормативных коэффициентов чувствительности защит при коротком замыкании (КЗ) вовсе не означает, что такая чувствительность обеспечивается и при межвитковых замыканиях.

Токовая отсечка без выдержки времени, в зону срабатывания которой входит только 60–70% обмотки, недостаточно эффективна для ограничения объема и степени повреждения, так как реагирует на относительно большие токи КЗ, а к межвитковым замыканиям остается нечувствительной.

В соответствии с [1] аварийный ток при межвитковых замыканиях может быть в пределах 0,06–70% номинального тока трансформатора ( н тр).

Дифференциальная защита трансформатора, выполненная с применением реле ДЗТ-11, также не обеспечивает достаточную надежность при межвитковых замыканиях, поскольку ток ее срабатывания значительно больше, чем аварийный ток при подобных замыканиях.

Читать еще:  Что такое двигатель td42

Защита трансформатора, выполненная с использованием микропроцессорных устройств, срабатывает при токах, составляющих 20–30% н тр.

Газовая защита весьма чувствительна к витковым замыканиям, однако зависимость времени срабатывания защиты от интенсивности газообразования увеличивает степень повреждения трансформатора.

ПРЕДЛАГАЕМАЯ СХЕМА

Для повышения чувствительности защиты к межвитковым замыканиям, а также для обеспечения ее действия на стадии развивающегося повреждения необходимо уменьшить ток срабатывания.

Известно, что при двухфазном КЗ ток в поврежденных фазах протекает во встречных направлениях. Если через окна шинных трансформаторов тока (ТТ) в фазах А, В, С пропустить изолированные проводники двух фаз, то при двухфазном КЗ ток в реле, подключенных к ТТ, будет определяться разностью первичных, а не вторичных токов, благодаря чему ток небаланса в реле будет весьма мал.

Это позволяет применить самобалансирующуюся защиту при межвитковых замыканиях (рис. 1).

Рис. 1. Схема защиты электродвигателя при двухфазном коротком замыкании

ЗАЩИТА ЭЛЕКТРОДВИГАТЕЛЯ

При двухфазном КЗ, например между фазами А и В, отпадает размыкающийся контакт реле мощности КW1. Замыкающиеся контакты KW2 и KW3 замкнуты.

После срабатывания реле времени КТ1 происходит отключение электродвигателя. Трехфазное КЗ внутри маловероятно и отключается другими защитами электродвигателя. При внешнем двухфазном КЗ защита не действует.

В нормальном режиме, при пуске и самозапуске электродвигателя защита не действует, так как разомкнуты размыкающиеся контакты реле KW1, KW2, KW3.

При потере питания в сети защита также не действует, так как размыкаются замыкающиеся контакты реле KW1, KW2, KW3.

Мощность срабатывания реле KW1, KW2, KW3 должна быть больше мощности в реле, обусловленной током небаланса ТТ при двухфазном КЗ, и меньше мощности, обусловленной током холостого хода. Ее величина определяется при наладке электродвигателя.

При обрыве во вторичных токовых цепях защита не блокируется, что не противоречит ПУЭ. Для исключения ложного срабатывания при включении электродвигателя защита действует с выдержкой времени 0,1 с.

ЗАЩИТА ТРАНСФОРМАТОРА ИЛИ РЕАКТОРА

Для защиты трансформатора или реактора вместо реле мощности KW1–KW3 предусматриваются токовые реле KА1–KА3 (рис. 2).

Рис. 2. Схема защиты трансформатора при двухфазном коротком замыкании

Защита действует на отключение при двухфазном КЗ в трансформаторе.

Для исключения действия защиты в режиме холостого хода предусматривается блокировка защиты замыкающими контактами выключателя Q1 или автоматическим выключателем QF1.

Для исключения действия защиты при внешнем КЗ ее выдержка времени должна быть больше выдержки времени защиты минимального напряжения ввода.

Ток срабатывания этих реле отстраивается от минимального тока нагрузки.

Для выполнения самобалансирующейся защиты необходимо конструктивное изменение шкафа распределительного устройства с установкой в нем шинных ТТ и изменение конструктивной части ошиновки для осуществления подвода изолированных проводников к ТТ.

ВЫВОД

Предлагаемые самобалансирующиеся защиты, действующие при двухфазных КЗ с выдержкой времени, основаны на измерении разности первичных, а не вторичных токов. Это значительно повышает чувствительность к межвитковым замыканиям на стадии развивающегося повреждения.

ЛИТЕРАТУРА

© ЗАО «Новости Электротехники»
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

Дифференциальная защита на реле РНТ

Реле состоит из двух элементов, объединенных в один корпус. Это быстронасыщающийся трансформатор, имеющий три стержня с обмотками, и выходное токовое реле, являющееся исполнительным органом.

Реле подключено к выводам вторичной обмотки, расположенной на крайнем стержне трансформатора. Две, а иногда и три первичные обмотки, располагаются на среднем стержне и связаны с трансформаторами тока. Имеются еще и дополнительные короткозамкнутые обмотки, предназначенные для гашения апериодической составляющей.

Настройка реле осуществляется переключением количества витков первичных обмоток, чтобы добиться равенства магнитных потоков в магнитопроводе. Также изменением сопротивлений резисторов в выходной и компенсирующей цепях выставляются требуемое торможение при переходных процессах, а также ток срабатывания выходного реле.

РНТ используется в основном для работы в составе РЗА силовых трансформаторов. В первый момент включения в сеть в их сердечнике возникают мощные намагничивающие токи. Они быстро затухают, но при этом создается прецедент для работы защиты: ведь мощность на намагничивание потребляется от источника и остается в трансформаторе.

Устройство РНТ позволяет отстроиться от намагничивающих токов. При резком броске тока сердечник трансформатора быстро намагничивается и реле перестает реагировать на подобное возмущение.

Но при этом при мощных сквозных КЗ реле может ложно сработать из-за токов небаланса. Этого недостатка лишено реле ДЗТ.

Полезное учебное пособие о расчету дифференциальной защиты для трансформаторов можно посмотреть и скачать по ссылке. (размер — 5.5Мб). Автор М.А. Александров — Санкт-Петербург, ПЭИПК.

Отключение от технологических защит

Мощные двигатели 6(10) кВ являются сложными устройствами с рядом вспомогательных систем. Например, системой обеспечения давления масла в подшипниках двигателя. Или системой принудительного охлаждения. Кроме того в двигатель могут устанавливаться термодатчики со своим блоком контроля.

Такие системы образуют собственные технологические защиты двигателя, с которыми должен взаимодействовать терминал релейной защиты.

Это взаимодействие осуществляется через дискретные входы терминала

При отключении синхронного двигателя защита должна действовать не только на выключатель в ячейке 6(10) кВ, но и на автомат гашения поля, который обесточивает цепь возбуждения СД.

В следующий раз мы рассмотрим дуговую защиту ячеек КРУ и завершим цикл статей по типовым присоединениям 6(10) кВ.

Терминал защиты и автоматики двигателя 6(10) кВ типа БМРЗ-УЗД.

Читать еще:  Двигатели вольво v40 характеристики

Разработчик НТЦ «Механотроника», www.mtrele.ru

Терминал содержит все перечисленные в статье защиты и автоматику

Виды дифзащиты

Дифзащита бывает продольной и поперечной. Устройства держат под контролем короткие замыкания.

Поперечная

Используется для одновременной защиты нескольких линий электропередач. Принцип работы заключается в сравнении значения нагрузок трансформаторных станций. Поперечная допускает установку ТТ на разных линиях электропередач, которые отходят от одного источника электрического питания.

Токовые цепи подключаются на разные значения линий электропередач. При коротком замыкании на одной из линий нагрузка увеличивается на второй. Реакция прессостата происходит при разных значениях токовой нагрузки на линиях.

Обратите внимание! При срабатывании поперечной дифференциальной защиты обеспечивается возможность самостоятельного определения поврежденного участка обслуживающим персоналом.

Продольная

Этот вид обеспечивает полноценную работу трансформаторных двигателей. Он характеризуется абсолютной селективностью, безотказностью для линий электропередач, которые имеют небольшую длину. Предоставляется возможность применения продольной защиты с другими видами.

Дифзащита сравнивает значения токовых нагрузок, которые протекают на участках линии через устройство. Чтобы замерить силу тока, используются трансформаторные станции. На двух ТТ соединяются цепи точками с прессостатом таким образом, чтобы на него воздействовала разница значений тока.

Продольный вид устройства

В этих схемах может возникать ток небаланса:

  • если появляются намагничивающиеся токи в обмотках трансформаторной станции. Такое случается, если переключить режим хх на полную нагрузку, что приводит к повышению номинального значения;
  • трансформаторная станция не всегда имеет такие же технические характеристики, как ТТ, с которым он работает в паре. Во избежание негативных последствий после выпуска ТТ проводятся испытания, которые определяют наиболее подходящие трансформаторные станции для работы в паре;
  • при отличающихся соединениях обмоток появляются токи небаланса. Уравнять значение электрических токов невозможно, если подбирать витки токовых трансформаторных станций.

К сведению! Устройство компенсации электрического тока небаланса устанавливается в современную микропроцессорную продольную дифференциальную защиту.

19. Виды повреждений и ненормальных режимов синхронных и асинхронных двигателей.

Особенность защиты электродвигателей заключается в том, что во время работы протекают электромеханические процессы. Электродвигатели критичны к небольшим перегрузкам из-за компактности и малых габаритов. Вследствие постоянной вибрации изоляция ускоренно стареет, а при несинхронных режимах у синхронных электродвигателей возможна поломка вала.

К ненормальным режимам работы относятся:

Тепловая характеристика двигателя

— перегрузка . В соответствии с МЭК допустимое время t ДОП перегрузки можно рассчитать

по формуле t ДОП

перегрузки, I Н,ДВ – номинальный ток двигателя, А ― тепловая постоянная (для мощных машин А=250, для остальных А=150);

— понижения напряжения . Для неответственных потребителей допускается снижение напряжения до (0,65…0,75)Uном , а для ответственных ― до 0,5Uном , а при дальнейшем снижении надо отключать асинхронный двигатель (так как при снижении напряжения увеличивается

― несимметрия возникает в результате неодинаковой фазной нагрузки сети, происходит перекос питающего напряжения. При работе двигателя от несимметричного напряжения возникает обратная последовательность, которая ведет к нагреву статора и ротора. Рекомендуют отключать двигатель при I 2 ≥ 0,1I Н,ДВ . К ненормальному режиму причисляется обрыв фазы. Двигатель может быстро перегреться и повредиться, если не отключить при возникновении такого режима (в этом случае I 2 =0,5 I 1 ).

К повреждениям относятся:

― междуфазные КЗ ― двух- (К (2) ) и трехфазные (К (3) ), сопровождаются сверхтоками, из-за чего происходят необратимые процессы ― выгорание изоляции, оплавление обмоток, их деформации в лобовых частях и т. д.;

― однофазное замыкание обмотки К (З) статора на землю или на корпус может происходить у двигателей, работающих в сетях с изолированной нейтралью или заземленной через дугогасящий реактор (для сетей с напряжениями 3, 6, 10 кВ). При таком повреждении к фазной изоляции прикладывается линейное напряжение. Как известно, в процессе эксплуатации изоляция стареет, поэтому велика вероятность электрического пробоя изоляции и возникновения двойного замыкания на землю. Из-за горения дуги возможно также сваривание магнитопровода;

― однофазное КЗ К (1) в сети с заземленной нейтралью (с напряжениями 0,4 кВ или 0,66 кВ) сопровождается сверхтоком, из-за чего происходит выгорание изоляции, расплавление обмоток и т. д;

― витковое замыкание в обмотке сопровождается местным нагревом короткозамкнутого витка с дальнейшим повреждением изоляции и перерастанием в междуфазные КЗ;

― замыкание обмотки ротора на землю в общем случае не считается опасным, и двигатель в таком режиме может работать сколь угодно долго, если не считать, что повышается вероятность двойного замыкания на землю, которое необходимо отключать без выдержки времени;

― обрыв одной фазы двигателя сопровождается большими токами обратной последовательности, возникновением двойной частоты ротора, нагревом магнитопровода и обмоток двигателя;

― исчезновение напряжения возбуждения у синхронных машин. Двигатель работает в асинхронном режиме;

― асинхронный ход синхронной машины возможен при перегрузке и потере устойчивости. В этом режиме ротор вращается медленнее поля статора, возникают пульсирующие токи, сравнимые с пусковыми и токами КЗ;

― разрыв стержня ротора (для асинхронного двигателя с короткозамкнутым ротором). Возникает перерасход электрической энергии, при расширении повреждения и нарушении контактов всей обмотки – останов ЭД;

― эксцентриситет ― смещение оси ротора относительно статора. Чаще всего это повреждение возникает у высоковольтных двигателей, когда смещаются подшипники вала, и ротор может при вращении

в наихудшем случае задевать статор.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector