0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Arduino количество оборотов двигателя

Тахометр на Arduino

Тахометр — это полезный инструмент для подсчета RPM (оборотов в минуту) колеса или всего, что крутится. Самый простой способ сделать тахометр — это использовать ИК передатчик и приемник. Когда связь между ними прерывается, вы знаете, что что-то вращается и можете применять код для вычисления RPM, ориентируясь на частоту прерывания связи.

В этой статье мы рассмотрим, как использовать ИК-передатчик и приемник для изготовления тахометра с применением Arduino. Результат отображается на ЖК-дисплее 16х2.

Целью данного проекта является создание системы с одним входом и одним выходом. На входе устройства присутствует сигнал, изменяющийся с высокого (+5В) на низкий (+0В) уровень при нарушении связи. Согласно этому сигналу, Arduino будет увеличивать значение внутреннего счетчика. Потом проводится дополнительная обработка и расчет, и по прерыванию триггера на ЖК-дисплей будет выводиться рассчитанное RPM.

Для связи мы будем использовать ИК-луч от ИК-светодиода, включенного через низкоомный резистор так, чтобы светиться ярко. В качестве приёмника мы будем использовать фототранзистор, который при отсутствии света ИК-светодиода «закрывается». Компьютерный вентилятор будет размешен между ИК-передатчиком и приёмником и включен. ИК-приёмник включенный через транзисторную схему, будет генерировать прерывания. Для вывода результата будет использоваться Arduino LCD интерфейс, поэтому мы можем вывести окончательное значение RPM на ЖК-дисплей.

Элементы:
Arduino UNO
16×2 LCD
Макетная плата
Подстроечный резистор 5 кОм
Перемычки
SIP разъёмы
2x 2N2222 NPN транзистор
Инфракрасный светодиод
Фототранзистор
Резистор 10 Ом
Резистор 100 кОм
Резистор 15 кОм или 16 кОм
Компьютерный вентилятор

Подробный список элементов

Все элементы используемые в проекте указаны выше, но я более подробно опишу функции основных элементов.

Arduino UNO
Это плата Arduino, которую мы будем использовать для обработки импульсов от прерывания ИК-луча, которые сообщают о нахождении лопасти компьютерного вентилятора между приемником и датчиком. Arduino будет использовать эти импульсы наряду с таймером, чтобы вычислить RPM вентилятора.

ЖК-дисплей 16×2
После того, как Arduino вычислило RPM, эта значение будет отображаться на дисплее в понятном для пользователя виде.

Подстроечный резистор 5 кОм
Этот подстроечный резистор будет использоваться для регулировки контрастности ЖК-дисплея 16×2. Он дает аналоговое напряжение в диапазоне от 0 до +5В, позволяя настроить яркость ЖК-дисплея.

Инфракрасный светодиод и Фототранзистор
Фототранзистор открывается, когда мощный ИК-свет падает на него. Поэтому, когда ИК-светодиод горит, он держит фототранзистор открытым, но если ИК-светодиод закрывается например, лопастью вентилятора, то фототранзистор закрывается.

2N3904 и 2N3906
Эти транзисторы используются для преобразования уровня сигнала, с целью обеспечения выходных импульсов с фототранзистора для Arduino, в которых нет никаких напряжений кроме +0 и +5В.

Принципиальная схема

В схеме, интерфейс связи с ЖК-дисплеем упрощен и имеет только 2 линии управления и 4 линии передачи данных.

Особенности схемы

Интерфейс ЖК-дисплея 16×2
2 управляющих контакта и 4 для передачи данных подключены от Arduino к ЖК-дисплею. Это то, что указывает ЖК-дисплею, что и когда делать.

Схема обрыва ИК-луча
Сигнал обрыва ИК-луча идет на 2-ой цифровой контакт Arduino. Это прерывает Arduino, что позволяет ему засчитать импульс и позволяет тахометру получать данные.

Arduino LCD библиотека

Для этого проекта мы будем использовать Arduino LCD библиотеку. В основном мы будем просто обновлять значение RPM на второй строке на новое.

В качестве подготовки, посмотрите на код приведенный ниже, в котором при помощи этой библиотеки на ЖК-дисплей выводиться «Hello, World!» В тахометре мы будем использовать похожий код, особенно: «lcd.print(millis()/1000);».

Разберитесь в функциях этой ЖК-библиотеки как можно подробнее, прежде чем двигаться дальше. Она не слишком сложна и хорошо документирована на сайте Arduino.

Подсчет RPM при помощи Arduino

Так как мы собираемся подсчитать RPM компьютерного вентилятора, мы должны понимать, что для подсчета мы используем прерывание ИК-луча. Это очень удобно, но мы должны учитывать, что у компьютерного вентилятора 7 лопастей. Это значит, 7 прерываний равно 1 обороту.

Если мы будем отслеживать прерывания, мы должны знать, что каждое седьмое прерывание означает, что только что произошел 1 полный оборот. Если мы отследим время, необходимое для полного оборота, то мы легко вычислим RPM.

Время 1-го оборота = P * (µS/оборот)
RPM = кол-во оборотов/мин = 60 000 000 * (µS/мин) * (1/P) = (60 000 000 / P) * (кол-во оборотов/мин)

Для расчета RPM мы будем использовать формулу приведенную выше. Формула точная, и точность зависит от того, насколько хорошо Arduino сможет отслеживать время между прерываниями и посчитывать количество полных оборотов.

Сборка схемы

На фотографии ниже вы можете увидеть все необходимые детали и перемычки как на схеме.

Для начала подключается +5В и линии данных/управления ЖК-дисплея. Затем ЖК-дисплей, потенциометр контрастности и светодиод питания.

Схема обрыва ИК-луча собрана. Старайтесь, чтобы между ИК-светодиодом и фототранзистором было расстояние. На этой фотографии видно расстояние между ИК-светодиодом и фототранзистором, где я размещу компьютерный вентилятор.

Хватит разговоров о аппаратной части! Давайте начнем делать прошивку/программу, чтобы увидеть работу устройства!

Программная часть

Есть две основных части кода, которые показаны и подробно описаны ниже:
-Основной цикл обновления ЖК-дисплея
-Обновление времени прерываний

В основном цикле считаются обороты и обновления ЖК-дисплея. Поскольку основной цикл это гигантский while(1) цикл, то он будет работать всегда, RPM считаться, а ЖК-дисплей обновляться несколько раз в секунду. Функция в прерывании подсчитывает время между прерываниями ИК, поэтому считать RPM можно в основном цикле.

Читать еще:  Датчик давления топлива на двигатель hdi

Помните, что компьютерный вентилятор имеет 7 лопастей, так что это тахометр предназначен для работы только с такими вентиляторами. Если ваш вентилятор или другое устройство дает только 4 импульса за оборот, измените в коде «(time*4)».

Два вентилятора работают на примерно 3000 оборотов в минуту и ​​2600 оборотов в минуту, с погрешностью около + / -100 оборотов в минуту.

Обзор тахометра на Arduino

Вентилятор генерирует импульсы прерывания, а на выходе мы видим RPM. Хотя точность не 100%, а примерно 95%, при стоимости элементов 10$ есть смысл построить этот тахометр на Arduino.

Что теперь делать?

Системы на основе обрыва луча полезны не только при измерении RPM, но и в качестве других датчиков. Например, вы хотите знать, открыта дверь или закрыта. Возможно, вы хотите знать, не проходило-ли что то под роботом. Есть много применений обрыва луча, а схема используемая тут настолько проста, что есть много путей для улучшения и сборки других удивительных устройств.

Заключение

В целом, я считаю этот проект успешным. Но дело во времени и опыте.. Так или иначе, система работает как задумывалось и достаточно надежно, а мы получили ожидаемый результат. Надеюсь, вам понравилось прочитать эту статью и узнать как сделать свой собственный тахометр на Arduino!

Крутящий момент и скорость поворота

Крутящий момент — векторная физическая величина, равная произведению радиус-вектора, проведённого от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело. Эта характеристика показывает, насколько тяжёлый груз сервопривод способен удержать в покое на рычаге заданной длины. Если крутящий момент сервопривода равен 5 кг×см, то это значит, что сервопривод удержит на весу в горизонтальном положении рычаг длины 1 см, на свободный конец которого подвесили 5 кг. Или, что эквивалентно, рычаг длины 5 см, к которому подвесили 1 кг.

Скорость сервопривода измеряется интервалом времени, который требуется рычагу сервопривода, чтобы повернуться на 60°. Характеристика 0,1 с/60° означает, что сервопривод поворачивается на 60° за 0,1 с. Из неё несложно вычислить скорость в более привычной величине, оборотах в минуту, но так сложилось, что при описании сервоприводов чаще всего используют такую единицу.

Иногда приходится искать компромисс между этими двумя характеристиками, так как если мы хотим надёжный, выдерживающий большой вес сервопривод, то мы должны быть готовы, что эта могучая установка будет медленно поворачиваться. А если мы хотим очень быстрый привод, то его будет относительно легко вывести из положения равновесия. При использовании одного и того же мотора баланс определяет конфигурация шестерней в редукторе.

Схема тахометра на основе платы Arduino представлена на следующем рисунке.

Схема содержит плату Arduino Pro Mini, модуль инфракрасного датчика и ЖК дисплей. Плата Arduino управляет всем процессом функционирования устройства: считывание импульса с выхода модуля инфракрасного датчика, вычисление частоты вращения (в оборотах в минуту) и передача значения этой частоты на ЖК дисплей. Инфракрасный датчик используется для обнаружения объекта. Мы можем регулировать чувствительность данного датчика с помощью встроенного в него потенциометра. Модуль инфракрасного датчика состоит из инфракрасного передатчика и фотодиода, который обнаруживает инфракрасные лучи. Инфракрасный передатчик излучает инфракрасные лучи, когда эти лучи падают на поверхность, они отражаются от нее и улавливаются фотодиодом (более подробно об этих процессах можно прочитать в статье про робота, движущегося вдоль линии). Выход фотодиода подключен к компаратору, который сравнивает значение с выхода фотодиода с опорным напряжением и результат сравнения выдает на плату Arduino.

Выход модуля инфракрасного датчика напрямую подключен ко контакту 18 (A4) Arduino. Vcc и GND подсоединены к контактам Vcc и GND arduino. ЖК дсиплей подключен к плате Arduino в 4-битном режиме. Его управляющие контакты RS, RW и En напрямую подсоединены к контактам 2, GND и 3 Arduino. Контакты данных D4-D7 подключены к контактам 4, 5, 6 и 7 Arduino. В схеме также присутствует кнопка, которую необходимо нажать для подсчета числа оборотов. Наш тахометр на основе платы Arduino подсчитывает число оборотов в течение 5 секунд а потом по вышеприведенной формуле осуществляет пересчет этого значения в число оборотов в минуту. Кнопка подключена к контакту 10 Arduino.

Лада 21099 2000, двигатель бензиновый 1.5 л., 70 л. с., передний привод, механическая коробка передач — электроника

Машины в продаже

Лада 21099, 1998

Лада 21099, 2000

Лада 21099, 2001

Лада 21099, 2000

Комментарии 10

Я правильно понял, что угол управления заслонкой регулируется плавно в зависимости от температуры двигателя и оборотов? «Обороты плавают из-за плохого контакта» — это точно плохой контакт или сбой в работе тахометра?
Датчик холла выдает на выходе 12В или 5?
В любом случае нужна подтяжка вывода через резистор к земле, чтобы уменьшить количество ложных срабатываний. Если с холла идет 12В, нужен резистивный делитель напряжения 12->5 и желательно стабилитрон на 4,7В.
Диод на входе ардуино я хз зачем, на нем просто 0,6В падает и все.

Читать еще:  23hs9430b характеристика шагового двигателя

Не совсем, у воздушной заслонки 3 положения, первое при котором она закрыта, второе при котором поддерживаются обороты в районе 1500, третье-он открыта.
Обороты плавают из за быстроразъемных коннекторов, сервопривод терял питание и вся плата сбоила, выдавала где то на 300 об/мин больше фактических, буду пробовать более надежные разъемы. Без сервопривода тахометр довольно четко показывал обороты.
Фактическое напряжение с выхода датчика холла 3В с лишним, иначе я бы спалил ардуинку, но мне кажется все таки амплитуда некоторых импульсов больше. Для делителя достаточно будет 10 кОм на вход, потому что второй резистор я включил программно:»digitalWrite(2, HIGH); // включаем подтягивающий резистор на 2 пине».
Диод отсекает просадку напряжения ардуино при запуске двигателя, например магнитолы бывает вырубаются при запуске стартера.

Встроенного в плату резистора не хватает от помех, лучше использовать внешнюю цепь. Его вообще ни на что не хватает, разве что цифровые сигналы принимать. С аналоговыми нужно делать внешние цепочки.
Если приходит 3В, то делитель напряжения не нужен, тут вы правы.
Диод отсекает разряд конденсатора на 2000 мкФ? На преобразователе, кстати, он есть на выходе, можете посмотреть. Имхо, в данной схеме диод не нужен.
Серву лучше на герметичный разъем посадить. Или вообще проводами напрямую кинуть, чтобы лишних просадок избежать.

D2 собственно и есть цифровой пин, когда крутишь стартер идет просадка бортовой сети до 10 вольт, соответственно напряжение падает и на линии 5 вольт — ардуинка при этом уходит в перезагрузку, диод и электролит для того чтобы убрать эту просадку и перезагруз на плате.
Серву я не могу напрямую сделать, нет ноутбука, приходится домой носить плату.

Я понимаю, что это цифровой пин, но сигнал-то принимается аналоговый с аналоговыми неточностями и погрешностями. Сигнал с датчика холла не является цифровым, поэтому его нужно фильтровать. И от качества фильтрования зависит дальнейшая работа программы.
По идее, 5В не должно проседать, оно же от преобразователя запитано, который должен работать при разных напряжениях на входе. Но я понимаю, что оно проседает и проц перезагружается.
Если будет время и желание, попробуйте выводы диода закоротить и посмотреть, будет ли разница с перезагрузками. Мне кажется, что не будет 🙂

2й пин считает переходы с LOW на HIGH, т.е. 0 и 1, он не измеряет напряжение как вольтметр на аналоговом пине, по моему все таки это цифра. Главное код заработал, остальное вопрос времени.

К цифровым сигналам предъявляются определенные требования, после применения которых фильтрация нужна иная, нежели для аналогового сигнала. Например, уровень нуля — 0В, а уровень логической единицы — 5В (или 3,3В для 3,3-вольтовой логики). Но самое главное — это максимальная похожесть на прямоугольники, а не трапеции. Какой сигнал идет с датчика — хз, никто его осциллографом не смотрел. Но что-то мне подсказывает, что цифровым он не является как раз из-за завалов импульса и возможных индуктивных вспышек от катушки. Но я тоже осциллографом не лазил и могу только предполагать.

Еще заметил, что у вас счет импульсов с датчика идет в основном цикле программы. Поищите информацию про прерывания, а именно про внешние прерывания. В программе могут идти долгие вычисления чего-либо и счетчик импульсов будет работать неправильно. Прерывания будут работать строго тогда, когда будет приходить импульс и счет (при должной фильтрации) будет происходить корректно.

2й пин считает переходы с LOW на HIGH, т.е. 0 и 1, он не измеряет напряжение как вольтметр на аналоговом пине, по моему все таки это цифра. Главное код заработал, остальное вопрос времени.

Короче, в дебри меня потянуло. Там же частота до 100 Гц, это крохи для микроконтроллера. Будет работать более-менее и так. Но резистор подтягивающий я бы все равно добавил, чтобы сигнал был более прямоугольный.
Вы большой молодец, что занялись этим вопросом 🙂

Конденсатор, который на 3,3 нФ надо подбирать, без него обороты растут до космических значений, ну и при добавлении новых блоков растет погрешность. Спасибо за помощь.

Пожалуйста. Интересно наблюдать за вашим проектом 🙂

Драйвер для управления шаговым двигателем ULN2003

Драйвер – это устройство, которое связывает контроллер и шаговый двигатель. Он нужен так как цифровой вывод микроконтроллера Arduino UNO может выдать ток максимум

40 мА, а одна обмотка шагового двигателя 28BYJ-48 в пике потребляет

320 мА, следовательно если подключить двигатель напрямую, микроконтроллер сгорит.

Для защиты микроконтроллера был разработан «Модуль шагового двигателя ULN2003», в котором используется микросхема ULN2003A (по сути, состоящая из 7 ключей), позволяющая управлять нагрузкой до 500 мА (один ключ). Данный модуль может работать с 5В и 12В двигателем 28BYJ-48, для переключения необходимо установить или убрать перемычку (по умолчанию перемычка установлена, питание 5В).

Болванка для кода

Так как мы имеем дело с такими нежными величинами как время и пространство, то лучше сразу освоить прерывания.

Обратите внимание на модификатор volatile у переменной counter. Все переменные, которые будут изменяться в обработчике прерывания (ISR) должны быть volatile. Это слово говорит компилятору, что переменная может изменяться неожиданно и доступ к ней нельзя оптимизировать.

Читать еще:  Двигатель газ 402 тех характеристики

Функция ISR() вызывается каждый раз, когда появляется единица на ноге fqPin. Мы эту функцию не вызываем, это делает сам контроллер. Он это делает, даже когда основная программа стоит в ступоре на функции delay(). Считайте, что ISR() обслуживает событие, от вас не зависящее и данное вам свыше как setup() и loop(). Контроллер прерывает выполнение вашей программы, выполняет ISR() и возвращается обратно в ту же точку, где прерывал.

Обратите внимание, что в функции loop() мы отключаем прерывания вообще любые для того, чтобы прочитать переменную counter и сохранить её во временную переменную cnt. Потом, конечно же, включаем снова. Так мы можем потерять один вызов, конечно же, но с другой стороны, переменная unsigned long имеет 32 бита, а процессор ATMega32 8-битный, вряд ли он скопирует данные за один такт, а ведь в процессе копирования может случиться прерывание и часть данных изменится. По этой же причине мы копируем значение counter локально так как значение этой переменной при использовании в разных местах программы может быть разным опять же из-за изменения её в прерывании.

Тело функции ISR() должно быть максимально коротким, точнее, сама функция должна выполняться максимально быстро. Это важно, так как прерывается выполнение вашего кода, который может оказаться чувствительным к непредвиденным задержкам. Некоторые библиотеки отключают прерывания для выполнения чувствительных с задержкам операций, например для управления светодиодной лентой WS2812.

Считаем обороты за единицу времени.

Первое, что приходит в голову, это взять интервал времени и посчитать количество измерений.

Как и у многих простых решений, у этого есть неочевидные минусы. Для повышения точности измерений вам необходим довольно большой интервал времени. Принцип тот же, что и у Шума квантования. При времени оборота колеса сравнимом с временем подсчёта, существенные изменения скорости вращения не будут замечены. Показания такого частотомера будут различаться до двух раз на каждый отсчёт.

Для повышени точности на малой скорости можно увеличить число К, как это сделано, скажем, в автомобильной технике для датчика ABS. Можно увеличить время подсчёта. Делая и то и другое мы подходим ко второй проблеме — переполнению счётчика. Да, переполнение легко лечится увеличением количества бит, но арифметика процессора Arduino не умеет считать 64-битные числа столь быстро, как хотелось бы и как она это делает с 16-разрядными.

Увеличение времени расчёта тоже не очень хорошо тк нам надо знать частоту прямо сейчас, вот при нажатии на газ, а не через пару секунд. Да и через пару секунд мы получим скорее некое среднее значение. За это время можно несколько раз сделать врумм-врумм.

Есть другой метод. Он лишён вышеописанных недостатков, но, как водится, имеет свои.

Считаем интервал между отсчётами

Мы можем засечь время одного отсчёта и другого, вычислить разницу. Величина, обратная вычисленному интервалу и есть частота. Круто! Но есть минусы.

Что делать, если наше колесо крутится еле-еле и измеренный интервал превышает разумные пределы? Выше я предложил считать частоты ниже разумного минимума за ноль.

Определённым недостатком метода можно считать шумы квантования на высоких частотах, когда целочисленный интервал снижается до нескольких двоичных разрядов.

Так же хотелось бы некую статистику подсчётов для улучшения показаний, а мы берём лишь последнее значение.

Методом проб и ошибок я подобрал интервал отображения данных на дисплее в 250мс как оптимальный. Если чаще, то цифры размазываются, если реже — бесит тормознутость.

Комбинированный метод

Можно попробовать объединить достоинства обоих методов.

То есть, мы засекаем время не просто между отсчётами, а время между проверками данных и делим на количество отсчётов за это время. Получается усреднённый интервал между отсчётами, обратная величина от которого есть частота. Предоставим компилятору оптимизировать вычисления.

Обратите внимание, что за интервал считается не время опроса, как в первом примере, а время от последнего отсчёта до предыдущего последнего отсчёта в прошлом опросе. Это заметно поднимает точность вычисления.

Таким образом, мы можем получать вполне достоверные данные как на низких так и на высоких частотах.

Если использовать кооперативную многозадачнось, то можно сделать подсчёт, скажем раз 100мс, а вывод на дисплей раз в 250мс. Очень короткий интервал опроса снизит чувствительность к низким частотам.

Как говорят в рекламе, «но это ещё не всё».

Навигация в меню

ЖК-дисплей используется для вывода информации, а энкодер – для ввода.

Первый экран с приветствием.

На втором экране нужно ввести внешний диаметр катушки – аппарат поддерживает катушки разных диаметров.

На третьем экране нужно ввести количество витков.

На четвёртом экране нужно ввести угол покрытия катушки. 360° означает, что катушка будет покрыта проволокой целиком. 720° означает, что катушка будет обмотана проволокой дважды по окружности.

На 5-м экране можно проверить все входные данные пред тем, как запустить машину. Если всё верно, нажимаете на энкодер, и машина стартует.

6-й экран демонстрирует количество витков в реальном времени.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector